Skip to main content
Log in

Superhydrophobic Reflective Thermal Insulation Coating Enabled by Spraying Method

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The vulnerability of architectural coatings to environmental conditions, such as dust pollution, ultraviolet (UV) radiation, and mechanical wear and tear, emphasizes that coatings should exhibit thermal insulation and self-cleaning capabilities. This study suggests a simple spraying approach for producing thermal insulation coatings that are superhydrophobic. The coating is available in a range of colors with solar reflective and superhydrophobic capabilities, with a contact angle of 159.6° and a roll angle of 2.3°. In outdoor situations, the coating effectively reduces the surface temperature. The coating was discovered to possess outstanding mechanical stability, corrosion resistance, and self-cleaning properties, and it can effectively withstand dust deposition. Therefore, in order to reduce the impact of the thermal island effect in cities, these coatings may be used on building facades and roofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B.J. He, Toward the Next Generation of Green Building for Urban Heat Island Mitigation: Zero UHI Impact Building, Sustain. Cities Soc., 2019, 50, 101647.

    Article  Google Scholar 

  2. X. Wang, H.D. Li, and S. Sodoudi, The Effectiveness of Cool and Green Roofs in Mitigating Urban Heat Island and Improving Human Thermal Comfort, Build. Environ., 2022, 217, 109082.

    Article  Google Scholar 

  3. V. Costanzo, G. Evola, and L. Marletta, Energy Savings in Buildings or UHI Mitigation?, Compar. Betw. Green Roofs Cool Roofs, Energy Build., 2016, 114, p 247–255.

    Google Scholar 

  4. Z.T. Zhang, K.T. Wang, B.H. Mo, X.F. Li, and X.M. Cui, Preparation and Characterization of a Reflective and heat Insulative coating Based on Geopolymers, Energy Build., 2015, 87, p 220–225.

    Article  Google Scholar 

  5. Y. Bao, R.Y. Guo, Q.L. Kang, C. Liu, W.B. Zhang, and Q. Zhu, Transparent, THERMAL Insulation and UV-Shielding Coating for Energy Efficient Glass Window, Ceram. Int., 2021, 47, p 24597–24606.

    Article  CAS  Google Scholar 

  6. Y.R. Lu, Z.H. Liu, X.D. Li, X.J. Yin, and H.D. Utomo, Development of Water-based Thermal Insulation Paints using Silica Aerogel made from Incineration Bottom Ash, Energy Build., 2022, 259, 111866.

    Article  Google Scholar 

  7. Y.C. Zhou, Y. Liu, F.L. Du, and S. Zhang, Rational design of Self-cleaning Superhydrophobic Coating with Outstanding Abrasion Resistance and Weatherability: tooward Highly Efficient Oil-Water Separation and Anti-corrosion Application, Prog. Org. Coat., 2023, 179, 107439.

    Article  CAS  Google Scholar 

  8. Y.R. Zhu, H.Q. Li, W. Huang, X.J. Lai, and X.R. Zeng, Facile Fabrication of Superhydrophobic Wood Aerogel by Vapor Deposition Method for Oil-Water Separation, Surf. Interfaces, 2023, 37, 102746.

    Article  CAS  Google Scholar 

  9. Y.M. Jian, H.T. Gao, and Y.Y. Yan, Fluorine-free superhydrophobic Surface with Micron-nanosized Two-tiered Structure for Self-cleaning, Anti-frosting, and Anti-icing Applications, Colloids Surf A Physicochem Eng AspPhysicochem. Eng. Asp., 2022, 651, 129761.

    Article  CAS  Google Scholar 

  10. K.V. Chauhan, M.K. Desai, and A.C. Patel, Recent Progress in the Development and Anti-icing Applications of Superhydrophobic Coatings, Mater. Today: Proc., 2022, 62, p 3922–3928.

    CAS  Google Scholar 

  11. Y. Liu, X.Y. Han, C. Chen, C.Y. Huang, L.L. Long, Y. He, G. Yang, F. Shen, X.H. Zhang, and Y.Z. Zhang, A Fluorine-free and Nanoparticle-Free Superhydrophobic coating: a Mechanism and Self-cleaning Application Investigation, Appl. Surf. Sci., 2023, 608, 155103.

    Article  CAS  Google Scholar 

  12. A.I. Mendoza, P. Larroche, F. Nilsson, M. Hedenqvist, E. Stromberg, H. Hillborg, and R. Moriana, Image Analysis of PDMS/ZnO Nanocomposite Surfaces for Optimized Superhydrophobic and Self-cleaning Surface Design, Surf. Interfaces, 2023, 37, 102733.

    Article  CAS  Google Scholar 

  13. Y. Yang, Y. Bian, Q. Gao, S.H. Dong, R.N. Ma, Y.Z. Fan, A. Du, X. Zhao, M.X. Yang, and X.M. Cao, Corrosion Resistance Study of Zn-Ni-B4C Composite Superhydrophobic Coatings with Hierarchical Rough Structure, Appl. Surf. Sci., 2023, 622, 156882.

    Article  CAS  Google Scholar 

  14. M.M.M. Ahmed, Y.T. Chi, Y.H. Hung, L.M.C. Reyes, and J.M. Yeh, UV-cured Electroactive Polyurethane Acrylate Coatings with Superhydrophobic Surface Structure of Biomimetic Peacock Feather for Anticorrosion Application, Prog. Org. Coat., 2022, 165, 106679.

    Article  CAS  Google Scholar 

  15. S.P. Dalawaia, M.A. SaadAlyb, S.S. Latthea, R.M. Xing, R.S. Sutarc, S. Nagappand, C. Had, K.K. Sadasivunie, and S.H. Liu, Recent Advances in Durability of Superhydrophobic Self-cleaning Technology: A Critical Review, Prog. Org. Coat.. Org. Coat., 2020, 138, p 105381.

    Article  Google Scholar 

  16. M.Z. Khan, J. Militky, M. Petru, B. Tomkova, A. Ali, E. Toren, and S. Perveen, Recent Advances in Superhydrophobic Surfaces for Practical Applications: A Review, Eur. Polym. J., 2022, 178, 111481.

    Article  Google Scholar 

  17. W.X. Zhu, J. Zhao, X.F. Wang, X.Y. Li, J.Y. Yu, and B. Ding, Facile Fabrication of Fluorine-free Breathable Poly(Methylhydrosiloxane)/Polyurethane Fibrous Membranes with Enhanced Water-Resistant Capability, J. Colloid Interface Sci., 2019, 556, p 541–548.

    Article  CAS  Google Scholar 

  18. H.T. Nguyen, H.M. Bui, Y.F. Wang, and S.J. You, Non-fluoroalkyl Functionalized Hydrophobic Surface Modifications Used in Membrane Distillation for Cheaper and More Environmentally Friendly Applications: A Mini-Review, Sustain. Chem. Pharm., 2022, 28, 100714.

    Article  CAS  Google Scholar 

  19. X. Xue, Z. Yang, Y.W. Li, P.C. Sun, Y. Feng, Z.Y. He, T.J. Qu, J.G. Dai, T. Zhang, J. Qin, L.J. Xu, and W.D. Zhang, Superhydrophobic Self-cleaning Solar Reflective Orange-Gray Paint Coating, Sol. Energy Mater. Sol. Cells, 2018, 174, p 292–329.

    Article  CAS  Google Scholar 

  20. Q. Gao, X.M. Wu, Y.M. Fan, and Q.L. Meng, Novel Near Infrared Reflective Pigments Based on Hollow Glass Microsphere/BiOCl1-xIx Composites: Optical Property and Superhydrophobicity, Sol. Energy Mater. Sol. Cells, 2018, 180, p 138–147.

    Article  CAS  Google Scholar 

  21. Q.P. Zhong, D.K. Macharia, W.J. Zhong, Z.X. Liu, and Z.G. Chen, Synthesis of Hydrophobic W18O49 Nanorods for Constructing UV/NIR-Shielding and Self-cleaning Film, Ceram. Int., 2020, 46, p 11898–11904.

    Article  CAS  Google Scholar 

  22. S. Qi, X.D. Xiao, Y. Lu, S. Cong, C.M. Huan, H.S. Liu, G. Xu, and J. Iqbal, Preparation and Energy Consumption Evaluation of Bifunctional Energy-Efficient Glass with Superior Superhydrophobic and Heat Shielding Properties, Energy Build., 2020, 215, 109913.

    Article  Google Scholar 

  23. S. Maharjan, K.S. Liao, A.J. Wang, and S.A. Curran, Highly Effective Hydrophobic Solar Reflective Coating for Building Materials: Increasing Total Solar Reflectance via Functionalized Anatase Immobilization in an Organosiloxane Matrix, Constr. Build. Mater., 2020, 243, 118189.

    Article  CAS  Google Scholar 

  24. J.Q. Chen, W.Q. Xie, X.G. Guo, B. Huang, Y. Xiao, and X.Q. Sun, Near Infrared Reflective Pigments Based on Bi3YO6 for Heat Insulation, Ceram. Int., 2020, 46, p 24575–24584.

    Article  CAS  Google Scholar 

  25. M. Rosati and S. Fedel, Rossi, NIR Reflective Pigments for Cool Roof Applications: A Comprehensive Review, J. Clean. Prod., 2021, 313, 127826.

    Article  CAS  Google Scholar 

  26. Q. Gao, X.M. Wu, D.H. Lu, and Y.M. Fan, Optical Property and Thermal Performance of Hollow Glass Microsphere/BiOBr1-xIx Composites as a Novel Colored Near Infrared Reflective Pigment, Dyes Pigm., 2018, 154, p 21–29.

    Article  CAS  Google Scholar 

  27. S. Liu, S. Zhang, X.D. Li, S. Wang, and C.Y. Li, Synthesis and Characterization of a New High Near-Infrared Reflectance Yellow Pigment: Bi2-xErxMoO6, Ceram. Int., 2023, 49, p 5456–5465.

    Article  CAS  Google Scholar 

  28. L.L. Liu, A.J. Han, M.Q. Ye, and W. Feng, The Evaluation of Thermal Performance of Cool Coatings Colored with High Near-Infrared Reflective Nano-Brown Inorganic Pigments: Magnesium Doped ZnFe2O4 Compounds, Sol. Energy, 2015, 113, p 48–56.

    Article  CAS  Google Scholar 

  29. Y.L. Qi, B. Xiang, and J. Zhang, Effect of Titanium Dioxide (TiO2) with Different Crystal Forms and Surface Modifications on Cooling Property and Surface Wettability of Cool Roofing Materials, Sol. Energy Mater. Sol. Cells, 2017, 172, p 34–44.

    Article  CAS  Google Scholar 

  30. Y. Liang, B. Qiao, T.J. Wang, H. Gao, and K. Yu, Effects of Porous Films on the Light Reflectivity of Pigmentary Titanium Dioxide Particles, Appl. Surf. Sci., 2016, 387, p 581–587.

    Article  CAS  Google Scholar 

  31. R. Paolini, D. Borroni, M. Pedeferri, and M.V. Diamanti, Self-cleaning Building Materials: The Multifaceted Effects of Titanium Dioxide, Constr. Build. Mater., 2018, 182, p 126–133.

    Article  CAS  Google Scholar 

  32. X.R. Song, W.X. Xiao, P. Wang, B. Liao, K.Q. Yan, and J.J. Zhang, Hollow Glass Microspheres-Based Ultralight Non-combustible Thermal Insulation Foam with Point-to-Point Binding Structure using Solvent Evaporation Method, Constr. Build. Mater., 2021, 292, 123415.

    Article  CAS  Google Scholar 

  33. Z.B. Yu, X.M. Du, P.L. Zhu, T. Zhao, R. Sun, J.Z. Chen, N. Wang, and W.H. Li, Surface Modified Hollow Glass Microspheres-Epoxy Composites with Enhanced Thermal Insulation and Reduced Dielectric Constant, Mater. Today Commun., 2022, 32, 104046.

    Article  CAS  Google Scholar 

  34. S. Dalai, S. Vijayalakshmi, P. Shrivastava, S.P. Sivam, and P. Sharma, Effect of Co Loading on the Hydrogen Storage Characteristics of Hollow Glass Microspheres (HGMs), Int. J. Hydrog. EnergyHydrog. Energy, 2014, 39(3304), p e3312.

    Google Scholar 

  35. Z. Xiong, J. Huang, Y.Z. Wu, and X. Gong, Robust Multifunctional Fluorine-Free Superhydrophobic Fabrics for High-efficiency Oil-Water Separation with Ultrahigh Flux, Nanoscale, 2022, 14, p 5840.

    Article  CAS  Google Scholar 

  36. Z. Xiong, H.Y. Yu, and X. Gong, Designing Photothermal Superhydrophobic PET Fabrics Via in situ Polymerization and 1,4-Conjugation Addition Reaction, Langmuir, 2022, 38, p 8708–8718.

    Article  CAS  Google Scholar 

  37. H.Y. Yu, M. Wu, G.G. Duan, and X. Gong, One-step Fabrication of Eco-Friendly Superhydrophobic Fabrics for High-efficiency Oil/Water Separation and Oil Spill Cleanup, Nanoscale, 2022, 14, p 1296.

    Article  CAS  Google Scholar 

  38. S.W. Miao, Z. Xiong, J.X. Zhang, Y.Z. Wu, and X. Gong, Polydopamine/SiO2 Hybrid Structured Superamphiphobic Fabrics with Good Photothermal Behavior, Langmuir, 2022, 38, p 9431–9440.

    Article  CAS  Google Scholar 

  39. Y.Y. Zhang and X. Gong, Smart and Durable pH-Responsive Superhydrophobic Fabrics with Switchable Surface Wettability for High-efficiency and Complex Oil/Water Separation, Giant, 2023, 14, 100157.

    Article  CAS  Google Scholar 

  40. Y.L. Wu, X. Shu, Y. Yang, W. She, and L. Dong, Fabrication of Robust and Room-Temperature Curable Superhydrophobic Composite Coatings with Breathable and Anti-icing Performance, Chem. Eng. J., 2023, 463, 142444.

    Article  CAS  Google Scholar 

  41. A.S. Anjum, K.C. Sun, M. Ali, R. Riaz, and S.H. Jeong, Fabrication of Coral-Reef Structured Nano Silica for Self-cleaning and Superhydrophobic Textile Applications, Chem. Eng. J., 2020, 401, 125859.

    Article  CAS  Google Scholar 

  42. F. Wu, K. Pickett, A. Panchal, M.X. Liu, and Y. Lvov, Superhydrophobic Polyurethane Foam Coated with Polysiloxane-Modified Clay Nanotubes for Efficient and Recyclable Oil Absorption, ACS Appl. Mater. Interfaces, 2019, 11, p 25445–25456.

    Article  CAS  Google Scholar 

  43. N. Moradi, M. Jamshidi, R. Ghamarpoor, and M.R. Moghbeli, Surface Functionalization/Silane Modification of CeO2 Nanoparticles and their Influences on Photocatalytic Activity of Acrylic Films for Methylene Blue Removal, Prog. Org. Coat., 2023, 183, 107787.

    Article  CAS  Google Scholar 

  44. F.J. Wang, T. Xie, J.F. Ou, M.S. Xue, and W. Li, Cement Based Superhydrophobic Coating with Excellent Robustness and Solar Reflective Ability, J. Alloys Compd., 2020, 823, 153702.

    Article  CAS  Google Scholar 

  45. C.X. Zhu, J. Lv, L.D. Chen, W.Q. Lin, J. Zhang, J.T. Yang, and J. Feng, Dark, Heat-Reflective, Anti-ice Rain and Superhydrophobic Cement Concrete Surfaces, Constr. Build. Mater., 2019, 220, p 21–28.

    Article  CAS  Google Scholar 

  46. I. Roppolo, N. Shahzad, A. Sacco, E. Tresso, and M. Sangermano, Multifunctional NIR-Reflective and Self-cleaning UV-cured Coating for Solar Cell Applications Based on Cycloaliphatic Epoxy Resin, Prog. Org. Coat., 2014, 77, p 458–462.

    Article  CAS  Google Scholar 

  47. S.W. Lee, C.H. Lim, and E.I.B. Salleh, Reflective Thermal Insulation Systems in Building: A Review on Radiant Barrier and Reflective Insulation, Renew. Sust. Energ. Rev., 2016, 65, p 643–661.

    Article  Google Scholar 

  48. J.Y. Wang, A.J. Han, M.Q. Ye, and C.L. Chen, Thermal Insulation Performance of Novel Orange Fabric Coated with Fe3+-doped La2Zr2O7 NIR Solar Reflectivity Pigment, Sol. Energy, 2022, 244, p 218–226.

    Article  CAS  Google Scholar 

  49. J. Zhang, C.X. Zhu, J. Lv, W.C. Zhang, and J. Feng, Preparation of Colorful, Infrared-Reflective, and Superhydrophobic Polymer Films with Obvious Resistance to Dust Deposition, ACS Appl. Mater. Interfaces, 2018, 10, p 40219–40227.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant No. 61871281), the National Key Research and Development Plan “International Technological Innovation Cooperation/Hong Kong, Macao and Taiwan Technological Innovation Cooperation” of China (2018YFE0125800), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Wang or Changsi Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Wang, Y., Liu, S. et al. Superhydrophobic Reflective Thermal Insulation Coating Enabled by Spraying Method. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09060-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09060-4

Keywords

Navigation