Skip to main content

Advertisement

Log in

Phase stability, electronic and local structures of Li-doped (K,Na)NbO3 under hydrostatic pressure from first principles calculation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite the promising potential to replace Pb-based ferroelectric materials, potassium sodium niobate-based ceramics retain one critical drawback, namely, the temperature sensitivity which is considered the most challenging in practical applications. It has been proposed that the formation of a phase boundary rhombohedral–tetragonal (R–T) can stabilize the temperature dependence of this material. External factors such as thermal, electrical, magnetic and mechanical fields can induce structural phase transition and influence the piezoelectric and ferroelectric responses. In this study, the electronic and local structures of (Li,Na,K)NbO3 (KNLN) under hydrostatic pressure were investigated using first principles calculations within the generalized-gradient approximation. It is revealed that the internal stress presented in the KNLN ceramic due to the ionic size difference among the A-cation favors the formation of the tetragonal phase in ambient conditions. When the material is subjected to external pressure, the denser orthorhombic phase is more preferable at around 5.85 GPa and the rhombohedral phase at around 7.20 GPa. The bond strength and bandgap decrease, because the electronic charge density and electronic interaction are amplified. In addition, we observed the octahedral rotation signifying the lattice distortion for the tetragonal phase, while the inter-plane tilting takes over in other phases at high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Structural data and ionic coordinates from this study are deposited in the Figshare repository [https://doi.org/10.6084/m9.figshare.21557232.v3]. All other data are available from the authors upon request.

References

  1. J. Acker, H. Kungl, R. Schierholz, S. Wagner, R.A. Eichel, M.J. Hoffmann, Microstructure of sodium-potassium niobate ceramics sintered under high alkaline vapor pressure atmosphere. J. Eur. Ceram. Soc. 34(16), 4213–4221 (2014)

    Article  Google Scholar 

  2. J. Alanis, H.J. Ojeda-Galván, M.C. Rodríguez-Aranda, A.G. Rodríguez, H. Moreno García, J. Í niguez, M. E. Mendoza, H. R. Navarro-Contreras. High-pressure structural change in the ferroelectric layered perovskite Sr\(_{2}\)Nb\(_{2}\)O\(_{7}\). Phys. Rev. B, 100, 054110 (2019)

  3. X. Cheng, Q. Gou, J. Wu, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries. Ceram. Int. 40(4), 5771–5779 (2014)

    Article  Google Scholar 

  4. EU-Directive. Restriction of the use of certain hazardous substances in electrical and electronic equipment (rohs). Off J Eur Union, 46, 19–23 (2003)

  5. C. European. The waste electrical and electronic equipment directive weee 02/96/ec. Official Journal L, 37 (2003)

  6. D. Fritsch, Electronic and optical properties of sodium niobate: a density functional theory study. Adv. Mater. Sci. Eng. 1–9, 2018 (2018)

    Google Scholar 

  7. H. Fu, R.E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403(6767), 281–283 (2000)

    Article  ADS  Google Scholar 

  8. W. Ge, Y. Ren, J. Zhang, C. P. Devreugd, J. Li, D. Viehland, A monoclinic-tetragonal ferroelectric phase transition in lead-free (K\(_{0.5}\)Na\(_{0.5}\))NbO\(_3\)-x%LiNbO\(_3\) solid solution. J. Appl. Phys., 111(10), 103503 (2012)

  9. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, A. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, R. Wentzcovitch. Quantum espresso: a modular and open-source software project for quantum simulations of materials (2009)

  10. D. Gourdain, Ph. Pruzan, J. Besson, S. Klotz, J. Chervin, B. Canny, W. Marshall, J. Loveday, M. Hanfland. Compression of \(\text{KNbO}_3\) up to 30 \(\text{ GPa }\): transition sequence orthorhombic\(\rightarrow\)tetragonal\(\rightarrow\)cubic, Phys. Rev. B, 65 (2002)

  11. Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (\(\text{ Na}_{0.5}\text{ K}_{0.5}\))\(\text{ NbO}_3\) - \(\text{ LiNbO}_3\) ceramics. Appl. Phys. Lett., 85, 4121-4123 (2004)

  12. J. Hao, W. Li, J. Zhai, H. Chen. Progress in high-strain perovskite piezoelectric ceramics. Mater. Sci. Eng.: R: Reports, 135, 1–57 (2019)

  13. K. Hatano, K. Kobayashi, T. Hagiwara, H. Shimizu, Y. Doshida, Y. Mizuno. Polarization system and phase transition on \(\text{(Li,Na,K)NbO }_3\) ceramics. Jap. J. Appl. Phys., 49 (2010)

  14. M. Hinterstein, J. Rouquette, J. Haines, Ph. Papet, M. Knapp, J. Glaum, H. Fuess, Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Phys. Rev. Lett. 107, 077602 (2011)

    Article  ADS  Google Scholar 

  15. C. Hong, H. Kim, B. Choi, H. Han, J.S. Son, C. Ahn, W. Jo, Lead-free piezoceramics—where to move on? J. Materiomics, 2 (2016)

  16. Md. M. Hossain, First-principles study on the structural, elastic, electronic and optical properties of LiNbO\(_3\). Heliyon, 5(4) (2019)

  17. C. Hu, X. Meng, M.-H. Zhang, H. Tian, J. E. Daniels, P. Tan, F. Huang, L. Li, K. Wang, J.-F. Li, Q. Lu, W. Cao, Z. Zhou, Ultra-large electric field-induced strain in potassium sodium niobate crystals. Sci. Adv., 6(13):eaay5979 (2020)

  18. R. Huang, Y. Zhao, D. Yan, The enhanced piezoelectric property of (Li, K, Na) (Nb, TaO3) lead-free ceramics induced by rare earth oxide doping. J. Alloys Compd 750, 124–129 (2018)

    Article  Google Scholar 

  19. H. Jaffe, Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494–498 (2006)

    Article  Google Scholar 

  20. N. Jaykhedkar, N. Tripathy, V. Shah, B.A. Pujari, S. Premkumar, A comprehensive study of pressure dependent phase transitions in ferroelectric \(\text{ PbTiO }\)\(_3\), \(\text{ PbZrO}_3\) and \(\text{ BaTiO}_3\). Mat. Chem. Phys. 254, 123545 (2020)

  21. J. Kaczkowski, Electronic structure, ferroelectric properties, and phase stability of BiGaO\(_3\) under high pressure from first principles. J. Mater. Sci. 51(21), 9761–9770 (2016)

  22. K. Kakimoto, T. Sumi, I. Kagomiya. Pressure-dependent raman scattering spectrum of piezoelectric \(\text{(Li,Na,K)NbO }_3\) lead-free ceramics. Jap. J. Appl. Phys., 49 (2010)

  23. N.H. Khansur, U.R. Eckstein, M. Bergler, M. Alexander, K. Wang, J.-F. Li, M.R. Cicconi, K. Hatano, K. Kakimoto, D. de Ligny, K.G. Webber, In situ combined stress- and temperature-dependent raman spectroscopy of Li-doped \(\text{(Na, } \text{ K)NbO}_3\). J. Am. Ceram. Soc. 105(4), 2735–2743 (2022)

  24. N. Klein, E. Hollenstein, D. Damjanovic, H. J. trodahl, N. Setter, and M. Kuball. A study of the phase diagram of \(\text{(K,Na,Li)NbO }_3\) determined by dielectric and piezoelectric measurements, and raman spectroscopy. J. of Appl. Phys., 102:014112–1–014112–7, (2007)

  25. K. Kobayashi, K. Hatano, Y. Mizuno, C. Randall, Rayleigh behavior in the lead free piezoelectric \(\text{ Li}_{x}\)(\(\text{ Na}_{0.5}\text{ K}_{0.5}\))\(_{1-x}\text{ NbO}_3\) ceramic. Appl. Phys. Express, 5, 1501 (2012)

  26. J. Kong, L. Li, J. Liu, F. P. Marlton, M. R. V. Jørgense, A. Pramanick. A local atomic mechanism for monoclinic-tetragonal phase boundary creation in Li-doped \(\text{ Na}_{0.5}\text{ K}_{0.5}\text{ NbO}_3\) ferroelectric solid solution. Inorg. Chem., 61(10), 4335–4349 (2022)

  27. H. Liu, J. Chen, H. Huang, L. Fan, Y. Ren, Z. Pan, J. Deng, L.-Q. Chen, X. Xing, Role of reversible phase transformation for strong piezoelectric performance at the morphotropic phase boundary. Phys. Rev. Lett. 120, 055501 (2018)

    Article  ADS  Google Scholar 

  28. Q. Liu, J.-F. Li, L. Zhao, Y. Zhang, J. Gao, W. Sun, K. Wang, L. Li, Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. J. Mater. Chem. C 6, 1116–1125 (2018)

    Article  Google Scholar 

  29. Y.-X. Liu, H.-C. Thong, Y.-Y.-S. Cheng, J.-W. Li, K. Wang, Defect-mediated domain-wall motion and enhanced electric-field-induced strain in hot-pressed \(\text{ K}_{0.5}\text{ Na}_{0.5}\text{ NbO}_3\) lead-free piezoelectric ceramics. J. Appl. Phys., 129(2):024102 (2021)

  30. Z. Liu, H. Wu, Y. Yuan, H. Wan, Z. Luo, P. Gao, J. Zhuang, J. Zhang, N. Zhang, J. Li, Y. Zhan, W. Ren, Z.-G. Ye, Recent progress in bismuth-based high curie temperature piezo-ferroelectric perovskites for electromechanical transduction applications. Curr. Opin. Solid State Mater. Sci. 26(5), 101016 (2022)

    Article  ADS  Google Scholar 

  31. X. Lv, J. Zhu, D. Xiao, X. x. Zhang, J. Wu. Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem. Soc. Rev., 49:671–707 (2020)

  32. S. Mishra, R. Mishra, K. Brajesh, R. Ray, A. Himanshu, H. Pandey, N. Singh, Structural refinement and optical band gap studies of manganese-doped modified sodium potassium lithium niobate lead- piezoelectric ceramics. Int. J. Mod. Phys. B 28, 1450110 (2014)

    Article  ADS  Google Scholar 

  33. K. Momma, F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011)

    Article  Google Scholar 

  34. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244–247 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. B. Noheda, Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. Sci. 6, 27–34 (2002)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  37. R. Pinho, A. Tkach, M.A. Carpenter, J. Noudem, M.E. Costa, P.M. Vilarinho, Elastic moduli of potassium sodium niobate ceramics: Impact of spark plasma texturing. Scr. Mater. 218, 114837 (2022)

    Article  Google Scholar 

  38. J. Rodel, W. Jo, K. Seifert, E. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc., 92 (2009)

  39. R. Rubio-Marcos, J.F. Fernandez, D.A. Ochoa, J.E. García, E. Rojas-Hernandez, M. Castro, L. Ramajo, Understanding the piezoelectric properties in potassium-sodium niobate-based lead-free piezoceramics: Interrelationship between intrinsic and extrinsic factors. J. Eur. Ceram. Soc. 37(11), 3501–3509 (2017)

    Article  Google Scholar 

  40. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  ADS  Google Scholar 

  41. J.F. Scott, Application of modern ferroelectrics. Science 315(5814), 954–959 (2007)

    Article  ADS  Google Scholar 

  42. R. Shannon, Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides. Acta Crystallographica Section A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  43. S.I. Shkuratov, C.S. Lynch, A review of ferroelectric materials for high power devices. J. Materiomics 8(4), 739–752 (2022)

    Article  Google Scholar 

  44. E. Sun, W. Cao, Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 65, 124–210 (2014)

    Article  Google Scholar 

  45. H. Takao, Y. Saito, Y. Aoki, K. Horibuchi, Microstructural evolution of crystalline-oriented \(\text{(K }_{0.5}\text{ Na}_{0.5}\text{)NbO }_3\) piezoelectric ceramics with a sintering aid of cuo. J. Am. ceram. Soc., 89(6):1951–1956 (2006)

  46. K. Uchino, K. Kato, K. Imaizumi, M. Nitta, Ultrasonic linear motor using piezoelectric actuator. J. Ceram. Jpn. 96(1120), 1131–1136 (1988)

    Article  Google Scholar 

  47. X. Vendrell, J.E. García, F. Rubio-Marcos, D.A. Ochoa, L. Mestres, J.F. Fernández, Exploring different sintering atmospheres to reduce nonlinear response of modified KNN piezoceramics. J. Eur. Ceram. Soc. 33(4), 825–831 (2013)

    Article  Google Scholar 

  48. C. Wang, Y.-D. Hou, H.-Y. Ge, M. Zhu, H. Yan, Crystal structure and orthorhombic-tetragonal phase transition of nanoscale \(\text{(Li }_{0.06}\text{ Na}_{0.47}\text{ K}_{0.47}\text{)NbO }_3\). J. Eur. Ceram. Soc., 29:2589–2594 (2009)

  49. K. Wang, J.-F. Li, Domain engineering of lead-free Li-modified (K, Na)NbO\(_3\) polycrystals with highly enhanced piezoelectricity. \(Adv. Funct. Mater.\)20(12), 1924–1929 (2010)

  50. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014). (( PMID: 24499419))

    Article  Google Scholar 

  51. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138(47), 15459–15464 (2016)

    Article  Google Scholar 

  52. J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)

    Article  Google Scholar 

  53. L. Wu, T. Zheng, J. Wu, Excellent fatigue resistance in Sb nonstoichiometric KNN-based ceramics by engineering relaxor multiphase state. J. Eur. Ceram. Soc. 42(12), 4888–4897 (2022)

    Article  Google Scholar 

  54. H. J. Xiang, M. Guennou, J. Í niguez, J. Kreisel, L. Bellaiche, Rules and mechanisms governing octahedral tilts in perovskites under pressure. Phys. Rev. B, 96:054102 (2017)

  55. Y.-Q. Xu, S.-Y. Wu, L.-J. Zhang, L.-N. Wu, C.-C. Ding, First-principles study of structural, electronic, elastic, and optical properties of cubic KNbO\(_3\) and KTaO\(_3\) crystals. Phys. Status Solidi B 254(5), 1600620 (2017)

  56. J. Yang, Z. Gao, Y. Liu, Z. Xiong, F. Zhang, Z. Fu, F. Xu, X. Chen, Q. Yang, L. Fang, Time dependence of domain structures in potassium sodium niobate-based piezoelectric ceramics. RSC Adv. 11, 20057–20062 (2021)

    Article  ADS  Google Scholar 

  57. B.Y. Zhang, J. Wu, X. Chengd, X. Wang, D. Xiao, J. Zhu, X. Wang, X. Lou, Lead-free piezoelectrics based on potassium-sodium niobate with giant d\(_{33}\). ACS Appl. Mater. Interfaces 5(16), 7718–7725 (2013)

  58. M.-H. Zhang, K. Wang, Y.-J. Du, G. Dai, W. Sun, G. Li, D. Hu, H.C. Thong, C. Zhao, X.-Q. Xi, Z.-X. Yue, J.-F. Li, High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J. Am. Chem. Soc. 139(10), 3889–3895 (2017)

    Article  Google Scholar 

  59. M.-H. Zhang, K. Wang, J.-S. Zhou, J.-J. Zhou, X. Chu, X. Lv, J. Wu, J.-F. Li, Thermally stable piezoelectric properties of (K, Na)NbO\(_3\)-based lead-free perovskite with rhombohedral-tetragonal coexisting phase. Acta Mater. 122, 344–351 (2017)

  60. S. Zhang, H.-J. Lee, C. Ma, X. Tan, Sintering effect on microstructure and properties of (K, Na)NbO\(_3\) ceramics. J. Am. Ceram. Soc. 94(11), 3659–3665 (2011)

  61. J.-J. Zhou, J.-F. Li, X.-W. Zhang, Orthorhombic to tetragonal phase transition due to stress release in (Li, Ta)-doped \(\text{(K, } \text{ Na)NbO}_3\) lead-free piezoceramics. J. Eur. Ceram. Soc. 32, 267–270 (2012)

  62. R. Zuo, J. Rödel, R. Chen, L. Li, Sintering and electrical properties of lead-free Na\(_{0.5}\)K\(_{0.5}\)NbO\(_3\) piezoelectric ceramics. J. Am. Ceram. Soc., 89(6):2010–2015, (2006)

Download references

Acknowledgements

We wish to acknowledge the financial support of the Science Achievement Scholarship of Thailand (SAST) (P.M.) and the Department of Physics, Mahidol University. Computational resources were provided by Thailand’s National e-Science Infrastructure Consortium. We would like to thank T. Cheiwchanchamnangij and K. Tivakornsasithorn for useful suggestions and discussion. Figure 8 were generated using the VESTA visualization package [33].

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm the contribution to the paper as follow: MS devised the project, the main conceptual idea and proof outline. PM and MS performed analytical and numerical simulations. WT and PS-F contributed to the interpretation of the results. PM, PS-F and MS wrote the manuscript. All authors contributed to the design and implementation of the research, read and approved the final manuscript.

Corresponding author

Correspondence to M. Suewattana.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metta, P., Sae-Fu, P., Thammada, W. et al. Phase stability, electronic and local structures of Li-doped (K,Na)NbO3 under hydrostatic pressure from first principles calculation. Appl. Phys. A 129, 280 (2023). https://doi.org/10.1007/s00339-023-06520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06520-5

Keywords

Navigation