Skip to main content
Log in

Novel BaTiO3/Ag/WO3 nanocomposite as LPG gas sensor: optical, morphological, and dielectric properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, a BaTiO3/Ag/WO3 nanocomposite was chemically synthesized for its gas sensing properties towards LPG. The formation of the novel BaTiO3/Ag/WO3 nanocomposite was confirmed by XRD, TEM and FTIR analyses using the peak positions, observed planes, and existing vibrational bands, respectively with, Ag NPs of ~ 24 nm. The direct band gap 3.1 eV and absorption edge (411 nm) of the BaTiO3/Ag/WO3 nanocomposite were determined using UV–Vis spectroscopy. The vibrational bands at 471, 504, 804, and 1636 cm−1 are attributed to the interaction of silver with O–W–O and W–O–W in WO3, Ti–O in BTO, and C–O, respectively in the BTO/Ag/WO3 nanocomposite. The higher dielectric constant and activation energy were estimated to be 2342 and 9.7 meV respectively. The sensitivity towards LPG at high temperature was ~ 99% with ~ 88 µA Ia.c., while a.c. conductivity was very small at high temperatures. Long-time stability (30 days) with lower response time (10-4 s) and recovery time (17–21 s) were achieved. The limit of detection for LPG was found 205 ppm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data and code availability

There is no data and code used to conduct research work. All generated data has been illustrated in the form of graphs and tables.

References

  1. V.S. Bhati, M. Kumar, R. Banerjee, J. Mater. Chem. C Mater. 9, 8776 (2021)

    Google Scholar 

  2. D.D.L. Chung, Electromagn. Interference Shield. Effect. Carbon Mater. 39, 279 (2001)

    Google Scholar 

  3. L. Tamayo, M. Azócar, M. Kogan, A. Riveros, M. Páez, Mater. Sci. Eng., C 69, 1391 (2016)

    Google Scholar 

  4. C.I. Idumah, M. Zurina, J. Ogbu, J.U. Ndem, E.C. Igba, Compos. Interfaces 27, 1–72 (2020)

    ADS  Google Scholar 

  5. C.I. Idumah, C.M. Obele, E.O. Emmanuel, A. Hassan, Surf. Interfaces 21, 100734 (2020)

    Google Scholar 

  6. D. Rathore, R. Kurchania, R.K. Pandey, J. Nanosci. Nanotechnol. 13, 1812 (2013)

    Google Scholar 

  7. R. Sato, M. Ohnuma, K. Oyoshi, Y. Takeda, Phys. Rev. B Condens. Matter Mater. Phys. 90, 125417 (2014)

    ADS  Google Scholar 

  8. J. Natsuki, Int. J. Mater. Sci. Appl. 4, 325 (2015)

    Google Scholar 

  9. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016)

    Google Scholar 

  10. Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Russ. Chem. Rev. 77, 233 (2008)

    ADS  Google Scholar 

  11. C. Baker, A. Pradhan, L. Pakstis, D.J. Pochan, S.I. Shah, J. Nanosci. Nanotechnol. 5, 244 (2005)

    Google Scholar 

  12. Q.H. Tran, V.Q. Nguyen, A.T. Le, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033001 (2013)

    ADS  Google Scholar 

  13. E. Abbasi, M. Milani, S.F. Aval, M. Kouhi, A. Akbarzadeh, H.T. Nasrabadi, P. Nikasa, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, M. Samiei, Crit. Rev. Microbiol 42, 173 (2016)

    Google Scholar 

  14. L. Aamir, J. Alloys Compd. 864, 158108 (2021)

    Google Scholar 

  15. M. Ahmadi, R. Younesi, M.J.F. Guinel, J. Mater. Res. 29, 1424 (2014)

    ADS  Google Scholar 

  16. A. Sharma, A.K. Saini, N. Kumar, N. Tejwan, T.A. Singh, V.K. Thakur, J. Das, Surf. Interfaces 28, 101641 (2022)

    Google Scholar 

  17. N. Lavanya, A.C. Anithaa, C. Sekar, K. Asokan, A. Bonavita, N. Donato, S.G. Leonardi, G. Neri, J. Alloys Compd. 693, 366 (2017)

    Google Scholar 

  18. D. Hidayat, A. Purwanto, W.N. Wang, K. Okuyama, Mater. Res. Bull. 45, 165 (2010)

    Google Scholar 

  19. S. Supothina, P. Seeharaj, S. Yoriya, M. Sriyudthsak, Ceram. Int. 33, 931 (2007)

    Google Scholar 

  20. A. Ponzoni, V. Russo, A. Bailini, C.S. Casari, M. Ferroni, A. Li Bassi, A. Migliori, V. Morandi, L. Ortolani, G. Sberveglieri, C.E. Bottani, Sens. Actuators B Chem 153, 340 (2011)

    Google Scholar 

  21. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Sens Actuators B Chem 241, 1170 (2017)

    Google Scholar 

  22. M. Khan, M. Kumari, H. Pawar, U.K. Dwivedi, R. Kurchania, D. Rathore, Appl. Phys. A Mater. Sci. Process. 127, 654 (2021)

    ADS  Google Scholar 

  23. R. Ashiri, A. Nemati, M. SasaniGhamsari, S. Sanjabi, M. Aalipour, Mater. Res. Bull. 46, 2291 (2011)

    Google Scholar 

  24. G. Ciofani, S. Danti, S. Moscato, L. Albertazzi, D. D’Alessandro, D. Dinucci, F. Chiellini, M. Petrini, A. Menciassi, Colloids Surf. B Biointerfaces 76, 535 (2010)

    Google Scholar 

  25. Y.P. Su, L.N. Sim, H.G.L. Coster, T.H. Chong, J. Membr. Sci. 640, 119861 (2021)

    Google Scholar 

  26. H.C. Pant, M.K. Patra, A. Verma, S.R. Vadera, N. Kumar, Acta Mater. 54, 3163 (2006)

    ADS  Google Scholar 

  27. B. Paul, N. Manwar, P. Bhanja, S. Sellaiyan, S.K. Sharma, R. Khatun, S. Jain, R. Bal, J. CO2 Util. 41, 101284 (2020)

    Google Scholar 

  28. E. György, A. Pérez Del Pino, J. Mater. Sci. 46, 3560 (2011)

    ADS  Google Scholar 

  29. L. Liu, A. He, X. Yao, Int. J. Electrochem. Sci. 17, 220635 (2022)

    Google Scholar 

  30. Y. Liu, X. Wang, Y. Qiao, M. Min, L. Wang, H. Shan, Y. Ma, W. Hao, P. Tao, W. Shang, J. Wu, C. Song, T. Deng, ACS Sustain. Chem. Eng. 7, 2602 (2019)

    Google Scholar 

  31. S. Zhang, B. Ping Zhang, S. Li, Z. Huang, C. Yang, H. Wang, J. Adv. Ceram. 6, 1–10 (2017)

    Google Scholar 

  32. X. Jiang, H. Wang, X. Wang, G. Yuan, Sol. Energy 224, 455 (2021)

    ADS  Google Scholar 

  33. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, J. Mater. Sci. Mater. Electron. 30, 13509 (2019)

    Google Scholar 

  34. J.B. Coulter, D.P. Birnie, Phys. Status Solidi B Basic Res 255, 1700393 (2018)

    ADS  Google Scholar 

  35. L. Gao, W. Gan, G. Cao, X. Zhan, T. Qiang, J. Li, Appl. Surf. Sci. 425, 889 (2017)

    ADS  Google Scholar 

  36. S. Ghosh, S.S. Acharyya, R. Singh, P. Gupta, R. Bal, Catal. Commun. 72, 33 (2015)

    Google Scholar 

  37. K. Haroon, A. Arafeh, P. Martin, T. Rodgers, N. Mendoza, M. Baker, Int. J. Cosmet. Sci. 41, 346 (2019)

    Google Scholar 

  38. D. Fu, S. Hao, J. Li, L. Qiang, J. Rare Earths 29, 164 (2011)

    Google Scholar 

  39. Y. Spectroscopies, Y. Shigesato, A. Murayama, T. Kamimori, K. Matsuhiro, Appl0 Surf. Sci. 33, 804–811 (1988)

    Google Scholar 

  40. H. Pawar, M. Khan, M. Kumari, U.K. Dwivedi, T. Prasad, R. Kumar, D. Rathore, Appl. Phys. A Mater. Sci. Process. 127, 384 (2021)

    ADS  Google Scholar 

  41. D.M.M. Krishantha, R.M.G. Rajapakse, D.T.B. Tennakoon, H.V.R. Dias, Ionics (Kiel) 12, 287 (2006)

    Google Scholar 

  42. Y. Yao, Y. Xue, Sens. Actuators B Chem 211, 52 (2015)

    Google Scholar 

  43. D. Rathore, S. Mitra, R. Kurchania, R.K. Pandey, J. Mater. Sci. Mater. Electron. 29, 1925 (2018)

    Google Scholar 

  44. V.R. Shinde, T.P. Gujar, C.D. Lokhande, Sens Actuators B Chem 120, 551 (2007)

    Google Scholar 

  45. N. van Hieu, N.A.P. Duc, T. Trung, M.A. Tuan, N.D. Chien, Sens Actuators B Chem 144, 450 (2010)

    Google Scholar 

  46. W.T. Wesley, M. Tyler Ley, F. Nicholas, Mater. Sens. 19, 3157 (2019)

    Google Scholar 

  47. LPG Gas Sensor Module. https://www.rhydolabz.com/wiki/?p=3381#:~:text=The%20module%20uses%20MQ%2D6,from%20200%20to%2010000%20ppm. Accessed 12 Feb 2023

  48. D. Rathore, R. Kurchania, R.K. Pandey, Sens. Actuators A Phys 199, 236 (2013)

    Google Scholar 

Download references

Acknowledgements

The author L. Aamir from University of Hail would like to express her gratitude to Deanship of Scientific Research at University of Hail, KSA for funding this work through Research Groups Program under Grant No. RG-22023.

Funding

University of Hail,RG-22023, Lubna Aamir

Author information

Authors and Affiliations

Authors

Contributions

PS: writing–original draft, experimental. LA: supervision, conceptualization, analysis, writing–review and editing. RRSR: experimental, analysis and writing. DR: conceptualization, Supervision, Analysis, and writing-editing. AA: analysis, review & editing.

Corresponding authors

Correspondence to Lubna Aamir or Deepshikha Rathore.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

There is not any experiment carried out which involving human tissue. Hence, there is not any requirement of approval to carry out experiments involving human tissue by an institutional review board or equivalent ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, P., Aamir, L., Rathore, R.R.S. et al. Novel BaTiO3/Ag/WO3 nanocomposite as LPG gas sensor: optical, morphological, and dielectric properties. Appl. Phys. A 129, 225 (2023). https://doi.org/10.1007/s00339-023-06512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06512-5

Keywords

Navigation