Skip to main content

Advertisement

Log in

The contribution of nonlinear behavior for large piezoelectric response in BNT-BT-based ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth sodium–barium titanate (BNT-BT)-based ceramics with multi-phase coexistence exhibit promising piezoelectricity, while the enhancement mechanism of phase transition on the piezoelectricity is worthy of further study. Here, we developed a new composition of (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Nb0.5Lu0.5)xO3 (named as BNTBT-xNL) by introducing (Nb0.5Lu0.5)4+ complex ions to reduce the driving field from P4bm to R3c. A large electro-strain of 0.48% (piezoelectric stain coefficient d33* = 686 pm/V) is obtained in x = 0.15 ceramics. With further studying the properties between poled and unpoled x = 0.15 ceramics, both the intrinsic and extrinsic contribution increased together with the coexistence of R3c and P4bm phase, which are responsible for exploring the origin of the excellent piezoelectric properties of BNT-NL ceramics. In this work, (Nb0.5Lu0.5)4+ complex ions are used to lower phase transition energy barriers and enhance the piezoelectric characteristics of BNT-based ceramics. Rayleigh analysis provides an effective way to quantify the impact of intrinsic and extrinsic contributions on the piezoelectric properties of ceramics.

Graphical abstract

The mechanism and Rayleigh analysis of piezoelectric response in BNTBT-xNL ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. H. Wang, H. Yuan, X.Y. Li, F.F. Zeng, K.Y. Wu, Q.J. Zheng, G.F. Fan, D.M. Lin, Chem. Eng. J. 394, 124879 (2020)

    Google Scholar 

  2. T. Takenaka, K.O. Sakata, K.O. Toda, Ferroelectrics 106, 375 (1990)

    ADS  Google Scholar 

  3. H.T. Li, S.Y. Zhou, J.W. Zhao, T.N. Yan, Y.X. Du, H.F. Zhou, Y.P. Pu, J. Adv. Dielect. 12, 2242007 (2022)

    Google Scholar 

  4. S.Y. Zhou, Y.P. Pu, X.Y. Zhao, T. Ouyang, J.M. Ji, Q.W. Zhang, C.P. Zhang, S.K. Sun, R. Sun, J.J. Li, D.W. Wang, J. Am. Ceram. Soc. 10, 4796 (2022)

    Google Scholar 

  5. H. Zhao, P.R. Ren, Q. Hua, L.J. Liu, X. Wang, Y.H. Wan, F.X. Yan, G.Y. Zhao, D.W. Wang, J. Alloy. Compd. 886, 161315 (2021)

    Google Scholar 

  6. P.Y. Fan, Y.Y. Zhang, B. Xie, Y.W. Zhu, W.G. Ma, C. Wang, B. Ying, J.L. Xu, J.Z. Xiao, H.B. Zhang, Ceram. Int. 44, 3211 (2018)

    Google Scholar 

  7. M. Yin, Z.J. Wang, P. Li, J.G. Hao, W. Li, J. Du, G.R. Li, C.M. Wang, P. Fu, Mater. Lett. 311, 131543 (2022)

    Google Scholar 

  8. W.P. Cao, W.L. Li, Y. Feng, T. Bai, Appl. Phys. Lett. 108, 202902 (2016)

    ADS  Google Scholar 

  9. J.H. Lee, N.X. Duong, M.H. Jung, Adv. Mater. 34, 2205825 (2022)

    Google Scholar 

  10. D. Damjanovic, J. Am. Ceram. Soc. 88, 2663 (2005)

    Google Scholar 

  11. M.H. Zhang, Y.X. Liu, K. Wang, J. Koruza, J. Schultheiss, Phys. Rev. Mater. 4(6), 064407 (2020)

    Google Scholar 

  12. Y.X. Liu, H.C. Thong, Y.Y.S. Cheng, J.W. Li, K. Wang, J. Appl. Phys. 129, 024102 (2021)

    ADS  Google Scholar 

  13. X. Ren, Nat. Mater. 3, 91 (2004)

    ADS  Google Scholar 

  14. Z.H. Zhao, Y.J. Dai, F. Huang, Sustain. Mater. Technol. 20, e00092 (2019)

    Google Scholar 

  15. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, P. Fu, G. Li, S. Zhang, J. Am. Ceram. Soc. 99, 402 (2016)

    Google Scholar 

  16. Y.J. Dai, Y.J. Zhao, Z. Zhao, Z.H. Zhao, Q.W. Zhou, X.W. Zhang, J. Phys. D Appl. Phys. 49, 275303 (2016)

    Google Scholar 

  17. R.A. Malik, A. Hussain, A. Zaman, A. Maqbool, J.U. Rahman, T.K. Song, W.J. Kim, M.H. Kim, RSC Adv. 5, 96953 (2015)

    ADS  Google Scholar 

  18. P. Shi, T.Y. Li, X.P. Zhu, W.Y. Liu, Q.D. Liu, B. Yang, X.J. Wang, R.R. Kang, S. Yang, X.J. Lou, Scr. Mater. 218, 114674 (2022)

    Google Scholar 

  19. X.Y. Liu, J. Yin, J.G. Wu, J. Am. Ceram. Soc. 104, 6277 (2021)

    Google Scholar 

  20. Y. Quan, W. Ren, G. Niu, L.Y. Wang, J.Y. Zhao, N. Zhang, M. Liu, Z.G. Ye, L.Q. Liu, T. Karaki, ACS. Appl. Mater. Interfaces 10, 10220 (2018)

    Google Scholar 

  21. F. Li, S.H. Wu, T.Y. Li, C.C. Wang, J.W. Zhai, J. Eur. Ceram. Soc. 40, 3918 (2020)

    Google Scholar 

  22. G. Dong, H. Fan, L. Liu, P. Ren, Z. Cheng, S. Zhang, J. Mater. 7, 593 (2021)

    Google Scholar 

  23. P. Shi, T.Y. Li, X.J. Lou, Z.H. Yu, X.P. Zhu, C. Zhou, Q.D. Liu, L.Q. He, X.X. Zhang, S. Yang, J. Alloy. Compd. 860, 158369 (2021)

    Google Scholar 

  24. H. Wang, Q. Li, Y.X. Jia, A.K. Yadav, B.B. Yan, M.Y. Li, Q. Shen, Q.F. Quan, W.J. Wang, G.Z. Dong, H.Q. Fan, J. Alloy. Compd. 879, 160378 (2021)

    Google Scholar 

  25. Y.Y. Zhang, P.Y. Fan, H. Li, J.P. Zhang, J.Z. Xu, M.Y. Li, X.B. Zhang, Z.Z. Wei, J.W. Xu, L.L. Zhao, Y. Lu, H.B. Zhang, Ceram. Int. 47, 17915 (2021)

    Google Scholar 

  26. H. Amorín, M. Venet, E. Chinarro, P. Ramos, M. Algueró, A. Castro, J. Eur. Ceram. Soc. 42, 4907 (2022)

    Google Scholar 

  27. S.H. Go, H. Kim, D.S. Kim, J.M. Eum, S.J. Chae, E.J. Kim, S. Nahm, J. Eur. Ceram. Soc. 42, 6478 (2022)

    Google Scholar 

  28. H.R. Jia, Z.G. Liang, Z. Li, F. Li, L.H. Wang, J. Mater. Chem. C 10, 337 (2022)

    Google Scholar 

  29. X.X. Li, B.W. Zhang, X.D. Cao, B.L. Peng, K.L. Ren, Ceram. Int. 48, 9051 (2022)

    Google Scholar 

  30. M.Z. Sun, P. Li, J. Du, W.F. Han, J.G. Hao, K.Y. Zhao, H.R. Zeng, W. Li, J. Mater. 8, 288 (2022)

    Google Scholar 

  31. J. Yuan, T.T. Ruan, Q. Li, Y.F. Liu, Y.N. Lyu, Ceram. Int. 48, 26335 (2022)

    Google Scholar 

  32. F.F. Zeng, C. Zhou, C. Zhang, L. Jiang, J.J. Zhang, H.T. Guo, Y.X. Chen, W.Z. Lu, W. Cai, G.Z. Zhang, Y.M. Hu, G.F. Fan, Ceram. Int. 48, 10539 (2022)

    Google Scholar 

  33. A.B. Haugen, M.I. Morozov, J.L. Jones, M.A. Einarsrud, J. Appl. Phys. 116, 214101 (2014)

    ADS  Google Scholar 

  34. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, T.R. Shrout, Appl. Phys. Lett. 96, 192903 (2010)

    ADS  Google Scholar 

  35. T. Zheng, J. Wu, Ceram. Int. 48, 23808 (2022)

    Google Scholar 

  36. A.E.-R. Mahmoud, A.M. Babeer, J. Electron. Mater. 51, 378 (2021)

    ADS  Google Scholar 

  37. L.Y. Yang, H. Fang, L.M. Zheng, J. Du, L.H. Wang, X.Y. Lu, W.M. Lu, R. Zhang, W.W. Cao, Appl. Phys. Lett. 114, 232901 (2019)

    ADS  Google Scholar 

  38. W.H. Liu, X. Ma, S.K. Ren, X.Y. Lei, L.J. Liu, Appl. Phys. A 126, 269 (2020)

    ADS  Google Scholar 

  39. S. Prasertpalichat, T. Siritanon, N. Nuntawong, D.P. Cann, J. Mat, Sci 54, 1162 (2018)

    Google Scholar 

  40. J.G. Hao, B. Shen, J.W. Zhai, C.Z. Liu, X.L. Li, X.Y. Gao, J. Appl. Phys. 113, 114106 (2013)

    ADS  Google Scholar 

  41. J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, P. Fu, J. Du, G.R. Li, J. Eur. Ceram. Soc. 36, 4003 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (51862004 and 52262017) and Foundation for Guangxi Bagui scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingning Li, Changrong Zhou or Guanghui Rao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1017 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Li, Q., Zhou, C. et al. The contribution of nonlinear behavior for large piezoelectric response in BNT-BT-based ceramics. Appl. Phys. A 129, 279 (2023). https://doi.org/10.1007/s00339-023-06506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06506-3

Keywords

Navigation