Skip to main content

Advertisement

Log in

Microstructure, residual stress, and nanoindentation properties of GCr15-bearing steel by cryogenic treatment and laser-peening composite strengthening

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

GCr15-bearing steel is widely used in generator bearings. To improve its mechanical properties, the cryogenic treatment and laser-peening (CT + LP) composite strengthening process and properties of GCr15-bearing steel were studied in this paper. The microstructure, residual stress distribution and nanoindentation properties of GCr15-bearing steel under CT + LP composite strengthening were studied by X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray stress analyzer and nanoindentation instrument. The experimental results showed that the residual compressive stress value and FWHM (full width at half maximum) value of the surface of GCr15-bearing steel increased after CT + LP composite strengthening, and the microstructure characteristics such as dislocation entanglement, proliferation, subgrain boundary and nanocrystalline appeared inside the CT + LP specimen. The nano-hardness and elastic modulus of CT + LP sample were 6.55 and 221.95 GPa, respectively, which were 12.94% and 32.61% higher than that of the untreated sample, respectively. The nanoindentation properties and deformation resistance of GCr15-bearing steel were improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. H.K.D.H. Bhadeshia, Prog. Mater Sci. 57, 268 (2012)

    Article  Google Scholar 

  2. F. Yu, X.P. Chen, H.F. Xu, H. Dong, Y.Q. Weng, Y.Q. Cao, Acta Metall. Sin. 56, 513 (2020)

    Google Scholar 

  3. Y.H. Wang, Z.N. Yang, F.C. Zhang, Y.M. Qin, Q.B. Wang, B. Lv, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 777, 139086 (2020)

    Article  Google Scholar 

  4. A. Bensely, A. Prabhakaran, D.M. Lal, G. Nagarajan, Cryogenics 45, 747 (2005)

    Article  ADS  Google Scholar 

  5. V.I. Bolobov, B. Thanh, IOP Conf. Ser. Mater. Sci. Eng. 327, 331 (2018)

    Article  Google Scholar 

  6. A.R. Rauf Jamali, W. Khan, A.D. Chandio, Z. Anwer, M. Hayat Jokhio, Mehran Univ. Res. J. Eng. Technol. 38, 755 (2019)

    Article  Google Scholar 

  7. B. Podgornik, I. Paulin, B. Zajec, S. Jacobson, V. Leskovsek, J. Mater. Process. Technol. 229, 398 (2016)

    Article  Google Scholar 

  8. B. Bist, Int. J. Pure Appl. Math. 116, 113 (2017)

    Google Scholar 

  9. T. Sonar, S. Lomte, C. Gogte, Mater. Today Proc. 5, 25219 (2018)

    Article  Google Scholar 

  10. F.H. Çakir, O.N. Çelik, J. Mater. Eng. Perform. 29, 6974 (2020)

    Article  Google Scholar 

  11. S. Prabhakaran, S. Kalainathan, P. Shukla, V.K. Vasudevan, Opt. Laser Technol. 115, 447 (2019)

    Article  ADS  Google Scholar 

  12. L.M. Kukreja, J.S. Hoppius, K. Elango, M.M. Barrientos, F. Pohl, F. Walther, E. Gurevich, A. Ostendorf, Laser Appl. Mag. 33, 042048 (2018)

    Article  Google Scholar 

  13. A. Siddaiah, B. Mao, Y.L. Liao, P.L. Menezes, Surf. Coat. Technol. 351, 188 (2018)

    Article  Google Scholar 

  14. L. Liu, J.J. Wang, J.Z. Zhou, Vacuum 148, 178 (2018)

    Article  ADS  Google Scholar 

  15. T. Kawashima, T. Sano, A. Hirose, S. Tsutsumi, K. Masaki, K. Arakawa, H. Hori, J. Mater. Process. Technol. 262, 111 (2018)

    Article  Google Scholar 

  16. W. Li, Y.H. Li, W.F. He, Q.P. Li, Adv. Laser Optoelectron. 12, 15 (2008)

    Article  Google Scholar 

  17. B.P. Fairand, B.A. Wilcox, W.J. Gallagher, D.N. Williams, J. Appl. Phys. 43, 3893 (1972)

    Article  ADS  Google Scholar 

  18. J.Z. Lu, K.Y. Luo, F.Z. Dai, J.W. Zhong, L.Z. Xu, C.J. Yang, L. Zhang, Q.W. Wang, J.S. Zhong, D.K. Yang, Mater. Sci. Eng. A 536, 57 (2012)

    Article  Google Scholar 

  19. M.Z. Ge, J.Y. Xiang, Y. Tang, X. Ye, Z. Fan, Y.L. Lu, X.H. Zhang, Surf. Coat. Technol. 337, 501 (2018)

    Article  Google Scholar 

  20. J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, J.W. Zhong, Acta Mater. 58, 3984 (2010)

    Article  ADS  Google Scholar 

  21. X.C. Zhang, Y.K. Zhang, J.Z. Lu, F.Z. Xuan, Z.D. Wang, S.T. Tu, Mater. Sci. Eng. A 527, 3411 (2010)

    Article  Google Scholar 

  22. C. Ye, S. Suslov, D. Lin, G.J. Cheng, Philos. Mag. 92, 1369 (2012)

    Article  ADS  Google Scholar 

  23. J. Li, J.Z. Zhou, A.X. Feng, Y. Huang, X.H. Tian, S. Huang, X.K. Meng, Opt. Laser Technol. 120, 105763 (2019)

    Article  Google Scholar 

  24. J. Pechousek, L. Kouril, P. Novak, J. Kaslik, J. Navarik, Measurement 131, 671 (2019)

    Article  ADS  Google Scholar 

  25. S.H. Li, L.H. Deng, X.C. Wu, Cryogenics 50, 433 (2010)

    Article  ADS  Google Scholar 

  26. J. Corrochano, J.C. Walker, M. Lieblich, J. Ibanez, W.M. Rainforth, Wear 270, 658 (2011)

    Article  Google Scholar 

  27. S.J. Lee, J. Kim, S.N. Kane, S.N. Kane, B.C. De Cooman, Acta Mater. 59, 6809 (2011)

    Article  ADS  Google Scholar 

Download references

Funding

This work was funded by the Wenzhou Science and Technology Bureau Major Science and Technology Special Project (ZG2019002), the Zhejiang Provincial Natural Science Foundation of China (LY20E050027), the Innovation Fund of Wenzhou University Rui’an Graduate College (YC202212010), and the Innovation Fund of Wenzhou University Rui’an Graduate College (YC202212023).

Author information

Authors and Affiliations

Authors

Contributions

AF: methodology, investigation, writing—original draft preparation, writing—review and editing, BL: methodology, investigation, writing—original draft preparation, YW: data curation, writing—review and editing, GX: conceptualization, methodology, writing—review and editing, CC: methodology, data curation. XP: data curation.

Corresponding author

Correspondence to Yacheng Wei.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Not applicable.

Consent to participate

The authors agree to participate.

Consent for publication

The authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, A., Liu, B., Wei, Y. et al. Microstructure, residual stress, and nanoindentation properties of GCr15-bearing steel by cryogenic treatment and laser-peening composite strengthening. Appl. Phys. A 129, 228 (2023). https://doi.org/10.1007/s00339-023-06500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06500-9

Keywords

Navigation