Skip to main content
Log in

The impact of the electric field on the photoionization cross section, polarizability, and donor impurity binding energy in multilayered spherical quantum dot

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present paper, we look at how the applied electric field (EF) and structure sizes affect the shallow donor impurity binding energy (\({E}_{\mathrm{b}}\)), polarizability (\({P}_{\alpha }\)) and photoionization cross section (PCS) of multilayer spherical quantum dots (MSQDs). The structure's wave functions and eigenvalues are calculated using the finite-element method (FEM) and in the framework of the effective mass approximation. The obtained numerical results show that the system sizes (core radius and well width) and the external EF have a considerable influence on the \({E}_{\mathrm{b}}\) of shallow donor impurity, polarizability as well as on the dependence of the PCS on the incident photon energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. M.K. Bahar, K.A. Rodríguez-Magdaleno, J.C. Martínez-Orozco, M.E. Mora-Ramos, F. Ungan, Optical properties of a triple AlGaAs/GaAs quantum well purported for quantum cascade laser active region. Mater. Today Commun. 26, 101936 (2021). https://doi.org/10.1016/j.mtcomm.2020.101936

    Article  Google Scholar 

  2. B. Chen, K.-X. Guo, R.-Z. Wang, Y.-B. Zheng, B. Li, Nonlinear optical rectification in asymmetric double triangular quantum wells. Eur. Phys. J. B. 66, 227–233 (2008). https://doi.org/10.1140/epjb/e2008-00398-y

    Article  ADS  Google Scholar 

  3. İ Karabulut, H. Şafak, M. Tomak, Nonlinear optical rectification in asymmetrical semiparabolic quantum wells. Solid State Commun. 135, 735–738 (2005). https://doi.org/10.1016/j.ssc.2005.06.001

    Article  ADS  Google Scholar 

  4. A. Sali, M. Fliyou, L. Roubi, H. Loumrhari, The effect of a strong magnetic field on the binding energy and the photoionization cross-section in a quantum well. J. Phys. Condens. Matter. 11(2427), 2436 (1999). https://doi.org/10.1088/0953-8984/11/11/013

    Article  ADS  Google Scholar 

  5. A. Sali, M. Fliyou, H. Loumrhari, Photoionization of shallow donor impurities in finite-barrier quantum-well wires. Phys. B 233, 196–200 (1997). https://doi.org/10.1016/S0921-4526(97)00305-0

    Article  ADS  Google Scholar 

  6. A. Sali, M. Fliyou, H. Loumrhari, The Effect of the electron-longitudinal optical phonon interaction on the photoionization in quantum well wires. Phys. Stat. Sol. (b) 200, 145–153 (1997). https://doi.org/10.1002/1521-3951(199703)200:1%3c145::AID-PSSB145%3e3.0.CO;2-7

    Article  ADS  Google Scholar 

  7. H. Satori, A. Sali, K. Satori, Polarizability of a polaron in spherical quantum dots. Phys. E 14, 184–189 (2002). https://doi.org/10.1016/S1386-9477(02)00381-8

    Article  Google Scholar 

  8. H. Satori, A. Sali, The finite element simulation for the shallow impurity in quantum dots. Phys. E. 48, 171–175 (2013). https://doi.org/10.1016/j.physe.2012.12.010

    Article  Google Scholar 

  9. A. Sali, A. Rezzouk, N. Es-Sbai, M.O. Jamil, The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM. Indian J. Pure Appl. Phys. 57, 483–491 (2019). https://doi.org/10.56042/ijpap.v57i7.20359

    Article  Google Scholar 

  10. A. Sali, J. Kharbach, A. Rezzouk, M. Ouazzani Jamil, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot. Superlattices Microstruct. 104, 93–103 (2017). https://doi.org/10.1016/j.spmi.2017.02.014

    Article  ADS  Google Scholar 

  11. A. Sali, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattices Microstruct. (2014). https://doi.org/10.1016/j.spmi.2014.01.011

    Article  Google Scholar 

  12. A. Sali, H. Satori, M. Fliyou, H. Loumrhari, The photoionization cross-section of impurities in quantum dots. Phys. Stat. Sol. (b) 232, 209–219 (2002). https://doi.org/10.1002/1521-3951(200208)232:2%3c209::AID-PSSB209%3e3.0.CO;2-O

    Article  ADS  Google Scholar 

  13. R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot. Superlattices Microstruct. 159, 107049 (2021). https://doi.org/10.1016/j.spmi.2021.107049

    Article  Google Scholar 

  14. R. Arraoui, A. Sali, A. Ed-Dahmouny, K. El-Bakkari, M. Jaouane, A. Fakkahi, The spatial electric field effect on the impurity binding energy and self-polarization in a double quantum dot. Eur. Phys. J. Plus. 137, 979 (2022). https://doi.org/10.1140/epjp/s13360-022-03193-6

    Article  Google Scholar 

  15. H. El Ghazi, A. John Peter, Photo-ionization cross-section of donor-related in (In, Ga)N/GaN core/shell under hydrostatic pressure and electric field effects. Superlattices Microstruct. 104, 222–231 (2017). https://doi.org/10.1016/j.spmi.2017.02.013

    Article  ADS  Google Scholar 

  16. M. Kirak, Effects of electric and magnetic fields on the binding energy and second harmonic generation for on- and off-center donor impurities in spherical multilayer quantum dot. Eur. Phys. J. Plus. 136, 664 (2021). https://doi.org/10.1140/epjp/s13360-021-01644-0

    Article  Google Scholar 

  17. W. Belaid, H. El Ghazi, I. Zorkani, A. Jorio, Pressure-related binding energy in (In, Ga)N/GaN double quantum wells under internal composition effects. Solid State Commun. 327, 114193 (2021). https://doi.org/10.1016/j.ssc.2021.114193

    Article  Google Scholar 

  18. H. Ren, X. Zhuang, T. Rabczuk, A higher order nonlocal operator method for solving partial differential equations. Comput. Methods Appl. Mech. Eng. 367, 113132 (2020). https://doi.org/10.1016/j.cma.2020.113132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ş Aktaş, S.E. Okan, H. Akbaş, Electric field effect on the binding energy of a hydrogenic impurity in coaxial GaAs/AlxGa1−xAs quantum well-wires. Superlattices Microstruct. 30, 129–134 (2001). https://doi.org/10.1006/spmi.2001.1004

    Article  ADS  Google Scholar 

  20. B. Vaseghi, G. Rezaei, V. Azizi, Simultaneous effects of spin-orbit interaction and external electric field on the linear and nonlinear optical properties of a cubic quantum dot. Opt. Quant. Electron. 42, 841–850 (2011). https://doi.org/10.1007/s11082-011-9492-5

    Article  Google Scholar 

  21. S.G. Jayam, K. Navaneethakrishnan, Photoionization of donor impurities in quantum wells in an electric field. Solid State Commun. 122, 433–438 (2002). https://doi.org/10.1016/S0038-1098(02)00155-2

    Article  ADS  Google Scholar 

  22. E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, C.A. Duque, Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Phys. E Low-Dimens. Syst. Nanostruct. 119, 114011 (2020). https://doi.org/10.1016/j.physe.2020.114011

    Article  Google Scholar 

  23. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, The multilayered spherical quantum dot under a magnetic field. Appl. Surf. Sci. 256, 3832–3836 (2010). https://doi.org/10.1016/j.apsusc.2010.01.036

    Article  ADS  Google Scholar 

  24. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots. Phys. E Low-Dimens. Syst. Nanostruct. 127, 114543 (2021). https://doi.org/10.1016/j.physe.2020.114543

    Article  Google Scholar 

  25. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot. Appl. Phys. A. 127, 908 (2021). https://doi.org/10.1007/s00339-021-05055-x

    Article  ADS  Google Scholar 

  26. A. Hakimyfard, M.G. Barseghyan, C.A. Duque, A.A. Kirakosyan, Simultaneous effects of pressure and temperature on donor binding energy in Pöschl-Teller quantum well. Phys. B 404, 5159–5162 (2009). https://doi.org/10.1016/j.physb.2009.08.293

    Article  ADS  Google Scholar 

  27. K. El-Bakkari, A. Sali, E. Iqraoun, A. Rezzouk, N. Es-Sbai, M. Ouazzani Jamil, Effects of the temperature and pressure on the electronic and optical properties of an exciton in GaAs/ AlxGa1−xAs quantum ring. Phys. B Condens. Matter. 538, 85–94 (2018). https://doi.org/10.1016/j.physb.2018.03.010

    Article  ADS  Google Scholar 

  28. E. Iqraoun, A. Sali, K. El-Bakkari, A. Ezzarfi, M.E. Mora-Ramos, C.A. Duque, Simultaneous effects of temperature, pressure, polaronic mass, and conduction band non-parabolicity on a single dopant in conical GaAs-AlxGa1−xAs quantum dots. Phys. Scr. 96, 065808 (2021). https://doi.org/10.1088/1402-4896/abf450

    Article  ADS  Google Scholar 

  29. A. Ed-Dahmouny, A. Sali, N. Es-Sbai, R. Arraoui, M. Jaouane, A. Fakkahi, K. El-Bakkari, C.A. Duque, Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs/ AlxGa1−xAs quantum dots. Eur. Phys. J. B. 95, 136 (2022). https://doi.org/10.1140/epjb/s10051-022-00400-2

    Article  ADS  Google Scholar 

  30. M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F. Ungan, The effects of temperature and pressure on the optical properties of a donor impurity in (In, Ga)N/GaN multilayer cylindrical quantum dots. Superlattices Microstruct. (2022). https://doi.org/10.1016/j.spmi.2021.107146

    Article  Google Scholar 

  31. D.A. Baghdasaryan, E.S. Hakobyan, D.B. Hayrapetyan, H.A. Sarkisyan, E.M. Kazaryan, Nonlinear optical properties of cylindrical quantum dot with Kratzer confining potential. J. Contemp. Phys. 54, 46–56 (2019). https://doi.org/10.3103/S1068337219010067

    Article  Google Scholar 

  32. A. El Moussaouy, D. Bria, A. Nougaoui, Hydrostatic stress dependence of the exciton–phonon coupled states in cylindrical quantum dots. Phys. B 370, 178–185 (2005). https://doi.org/10.1016/j.physb.2005.09.008

    Article  ADS  Google Scholar 

  33. M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, A. Ed-Dahmouny, F. Ungan, Photoionization cross section of donor single dopant in multilayer quantum dots under pressure and temperature effects. Phys. E Low-Dimens. Syst. Nanostruct. 144, 115450 (2022). https://doi.org/10.1016/j.physe.2022.115450

    Article  Google Scholar 

  34. T. Chen, W. Xie, S. Liang, The nonlinear optical rectification of an ellipsoidal quantum dot with impurity in the presence of an electric field. Phys. E 44, 786–790 (2012). https://doi.org/10.1016/j.physe.2011.11.027

    Article  Google Scholar 

  35. E. Sadeghi, Optical nutation in multilayered ellipsoidal quantum dots. Phys. E 73, 1–6 (2015). https://doi.org/10.1016/j.physe.2015.05.015

    Article  ADS  Google Scholar 

  36. E. Sadeghi, E. Naghdi, Polarization charges effects on optical properties of double ellipsoidal quantum dot. Phys. B 457, 178–181 (2015). https://doi.org/10.1016/j.physb.2014.10.011

    Article  ADS  Google Scholar 

  37. K. El-Bakkari, Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings. Superlattices Microstruct. (2020). https://doi.org/10.1016/j.spmi.2020.106729

    Article  Google Scholar 

  38. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot. Phys. E Low-Dimens. Syst. Nanostruct. (2022). https://doi.org/10.1016/j.physe.2022.115351

    Article  Google Scholar 

  39. T.A. Sargsian, M.A. Mkrtchyan, H.A. Sarkisyan, D.B. Hayrapetyan, Effects of external electric and magnetic fields on the linear and nonlinear optical properties of InAs cylindrical quantum dot with modified Pöschl-Teller and Morse confinement potentials. Phys. E Low-Dimens. Syst. Nanostruct. 126, 114440 (2021). https://doi.org/10.1016/j.physe.2020.114440

    Article  Google Scholar 

  40. M. Kırak, S. Yılmaz, M. Şahin, M. Gençaslan, The electric field effects on the binding energies and the nonlinear optical properties of a donor impurity in a spherical quantum dot. J. Appl. Phys. 109, 094309 (2011). https://doi.org/10.1063/1.3582137

    Article  ADS  Google Scholar 

  41. M. Kirak, Y. Altinok, The electric field effects on the third-harmonic generation in spherical quantum dots with parabolic confinement. Eur. Phys. J. B. 85, 344 (2012). https://doi.org/10.1140/epjb/e2012-30361-2

    Article  ADS  Google Scholar 

  42. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, A. Ed-Dahmouny, Investigation of the nonlinear optical rectification coefficient in a multilayered spherical quantum dot. Opt. Mater. 132, 112752 (2022). https://doi.org/10.1016/j.optmat.2022.112752

    Article  Google Scholar 

  43. A. Fakkahi, M. Kirak, A. Sali, Effect of impurity position and electric field on the optical absorption coefficients and oscillator strength in spherical multilayer quantum dot. Eur. Phys. J. Plus. 137, 1068 (2022). https://doi.org/10.1140/epjp/s13360-022-03279-1

    Article  Google Scholar 

  44. D.A. Baghdasaryan, E.M. Kazaryan, H.A. Sarkisyan, Photoionization and electrostatic multipoles properties of spherical core/shell/shell quantum nanolayer with off-center impurity. Superlattices Microstruct. 104, 69–77 (2017). https://doi.org/10.1016/j.spmi.2017.02.017

    Article  ADS  Google Scholar 

  45. M. Şahin, F. Tek, A. Erdinç, The photoionization cross section of a hydrogenic impurity in a multi-layered spherical quantum dot. J. Appl. Phys. 111, 084317 (2012). https://doi.org/10.1063/1.4705410

    Article  ADS  Google Scholar 

  46. D. Saikia, P. Dutta, N.S. Sarma, N.C. Adhikary, CdTe/ZnS core/shell quantum dot-based ultrasensitive PET sensor for selective detection of Hg (II) in aqueous media. Sens. Actuators B Chem. 230, 149–156 (2016). https://doi.org/10.1016/j.snb.2016.02.035

    Article  Google Scholar 

  47. S. Adhikary, S. Chakrabarti, Spectral broadening due to post-growth annealing of a long-wave InGaAs/GaAs quantum dot infrared photodetector with a quaternary barrier layer. Thin Solid Films 552, 146–149 (2014). https://doi.org/10.1016/j.tsf.2013.11.010

    Article  ADS  Google Scholar 

  48. A.M. See, O. Klochan, A.P. Micolich, M. Aagesen, P.E. Lindelof, A.R. Hamilton, A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor. J. Phys. Condens. Matter. 25, 505302 (2013). https://doi.org/10.1088/0953-8984/25/50/505302

    Article  Google Scholar 

  49. P.V. Kamat, Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 4, 908–918 (2013). https://doi.org/10.1021/jz400052e

    Article  Google Scholar 

  50. İ Karabulut, M.E. Mora-Ramos, C.A. Duque, Nonlinear optical rectification and optical absorption in GaAs– AlxGa1−xAs asymmetric double quantum wells: combined effects of applied electric and magnetic fields and hydrostatic pressure. J. Lumin. 131, 1502–1509 (2011). https://doi.org/10.1016/j.jlumin.2011.03.044

    Article  Google Scholar 

  51. A. Emre Kavruk, M. Sahin, F. Koc, Linear and nonlinear optical properties of GaAs/ AlxGa1−xAs/GaAs/AlyGa1−yAs multi-shell spherical quantum dot. J. Appl. Phys. 114, 183704 (2013). https://doi.org/10.1063/1.4829703

    Article  ADS  Google Scholar 

  52. S. Aktas, F.K. Boz, The binding energy of hydrogenic impurity in multilayered spherical quantum dot. Phys. E 40, 753–758 (2008). https://doi.org/10.1016/j.physe.2007.09.192

    Article  Google Scholar 

  53. S. Ortakaya, M. Kirak, Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement. Chin. Phys. B. 25, 127302 (2016). https://doi.org/10.1088/1674-1056/25/12/127302

    Article  ADS  Google Scholar 

  54. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Geometric effects on energy states of a hydrogenic impurity in multilayered spherical quantum dot. Appl. Surf. Sci. 255, 6561–6564 (2009). https://doi.org/10.1016/j.apsusc.2009.02.040

    Article  ADS  Google Scholar 

  55. A.R. Jeice, S.G. Jayam, K.S.J. Wilson, Effect of hydrostatic pressure and polaronic mass of the binding energy in a spherical quantum dot. Chin. Phys. B 24, 7 (2015). https://doi.org/10.1088/1674-1056/24/11/110303

    Google Scholar 

  56. M.G. Barseghyan, A. Hakimyfard, S.Y. López, C.A. Duque, A.A. Kirakosyan, Simultaneous effects of hydrostatic pressure and temperature on donor binding energy and photoionization cross section in Pöschl-Teller quantum well. Phys. E 42, 1618–1622 (2010). https://doi.org/10.1016/j.physe.2010.01.008

    Article  Google Scholar 

  57. L.M. Burileanu, Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields. J. Lumin. 145, 684–689 (2014). https://doi.org/10.1016/j.jlumin.2013.08.043

    Article  Google Scholar 

  58. F.K. Boz, B. Nisanci, S. Aktas, S.E. Okan, Energy levels of GaAs/AlxGa1−xAs/AlAs spherical quantum dot with an impurity. Appl. Surf. Sci. 387, 76–81 (2016). https://doi.org/10.1016/j.apsusc.2016.06.035

    Article  ADS  Google Scholar 

  59. S. Akgül, M. Şahin, K. Köksal, A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement. J. Lumin. 132, 1705–1713 (2012). https://doi.org/10.1016/j.jlumin.2012.02.012

    Article  Google Scholar 

  60. G. Murillo, N. Porras-Montenegro, Effects of an electric field on the binding energy of a donor impurity in a spherical GaAs-(Ga, Al)As quantum dot with parabolic confinement. Phys. Status Solidi (b). 220, 187 (2000). https://doi.org/10.1002/1521-3951(200007)220:1%3c187::AID-PSSB187%3e3.0.CO;2-D

    Article  ADS  Google Scholar 

  61. S. M’zerd, M. El Haouari, M. Aghoutane, M. El-Yadri, E. Feddi, F. Dujardin, I. Zorkani, A. Jorio, M. Sadoqi, G. Long, Electric field effect on the photoionization cross section of a single dopant in a strained AlAs/GaAs spherical core/shell quantum dot. J. Appl. Phys. 124, 164303 (2018). https://doi.org/10.1063/1.5046859

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The contributions of the authors are as follows: AF and MJ: worked on the numerical calculations, in formal analysis, and writing of the manuscript. AS: proposed the problem and worked on the numerical calculations and writing of the manuscript. MK, KL, KE-B, AE-D, RA, and HA: worked on the numerical calculations and writing of the manuscript.

Corresponding author

Correspondence to A. Fakkahi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakkahi, A., Jaouane, M., Limame, K. et al. The impact of the electric field on the photoionization cross section, polarizability, and donor impurity binding energy in multilayered spherical quantum dot. Appl. Phys. A 129, 188 (2023). https://doi.org/10.1007/s00339-023-06472-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06472-w

Keywords

Navigation