Skip to main content

Advertisement

Log in

3D extrusion printing of 304 stainless steel/polypropylene composites and sintering process optimization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Screw extrusion 3D printing in the low-cost preparation of high-quality metal products, which offers an edge over fused deposition molding (FDM) and laser-based additive manufacturing. In this study, spherical 304 stainless steel (SS304) micronized powder and polypropylene (PP) pellets were used as raw materials to manufacture composite samples of SS304 with a mass fraction of up to 90 wt%. After high-temperature heat treatment, metal samples with good qualities were obtained. The influence of 3D printing paths and heat treatment processes on the microstructure and mechanical properties of printed parts were studied. The results reveal that the samples printed using 27°/152° cross paths achieved a relative density with 95.78% and a tensile strength with 484 MPa after 6 h of sintering at 1280 °C at a pre-debinding rate with 60%. The overall performance is on par with components created using metal injection techniques (MIM), and this work provides the novel proposals for the production of metal parts using affordable 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, [Zhixiang Li], upon reasonable request.

References

  1. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019

    Article  ADS  Google Scholar 

  2. E. Davoodi, H. Montazerian, A.S. Mirhakimi, M. Zhianmanesh, O. Ibhadode, S.I. Shahabad, R. Esmaeilizadeh, E. Sarikhani, S. Toorandaz, S.A. Sarabi, R. Nasiri, Y. Zhu, J. Kadkhodapour, B. Li, A. Khademhosseini, E. Toyserkani, Additively manufactured metallic biomaterials. Bioact. Mater. 15, 214–249 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.027

    Article  Google Scholar 

  3. B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M. Leary, F. Berto, A. du Plessis, Metal additive manufacturing in aerospace: a review. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.110008

    Article  Google Scholar 

  4. M. Delic, D.R. Eyers, The effect of additive manufacturing adoption on supply chain flexibility and performance: an empirical analysis from the automotive industry. Int. J. Prod. Econ. (2020). https://doi.org/10.1016/j.ijpe.2020.107689

    Article  Google Scholar 

  5. S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of direct laser deposition for additive manufacturing; Part I: transport phenomena, modeling and diagnostics. Addit. Manuf. 8, 36–62 (2015). https://doi.org/10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  6. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2013). https://doi.org/10.1179/1743280411y.0000000014

    Article  Google Scholar 

  7. K.G. Prashanth, J. Eckert, Formation of metastable cellular microstructures in selective laser melted alloys. J. Alloys Compd. 707, 27–34 (2017). https://doi.org/10.1016/j.jallcom.2016.12.209

    Article  Google Scholar 

  8. T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A.M. Beese, A.D. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  9. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016). https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  10. S. Singh, G. Singh, C. Prakash, S. Ramakrishna, Current status and future directions of fused filament fabrication. J. Manuf. Process. 55, 288–306 (2020). https://doi.org/10.1016/j.jmapro.2020.04.049

    Article  Google Scholar 

  11. L.G. Blok, M.L. Longana, H. Yu, B.K.S. Woods, An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 22, 176–186 (2018). https://doi.org/10.1016/j.addma.2018.04.039

    Article  Google Scholar 

  12. B. Brenken, E. Barocio, A. Favaloro, V. Kunc, R.B. Pipes, Fused filament fabrication of fiber-reinforced polymers: a review. Addit. Manuf. 21, 1–16 (2018). https://doi.org/10.1016/j.addma.2018.01.002

    Article  Google Scholar 

  13. C. Suwanpreecha, A. Manonukul, A review on material extrusion additive manufacturing of metal and how it compares with metal injection moulding. Metals (2022). https://doi.org/10.3390/met12030429

    Article  Google Scholar 

  14. M. Ziaee, N.B. Crane, Binder jetting: a review of process, materials, and methods. Addit. Manuf. 28, 781–801 (2019). https://doi.org/10.1016/j.addma.2019.05.031

    Article  Google Scholar 

  15. L. Ren, X. Zhou, Z. Song, C. Zhao, Q. Liu, J. Xue, X. Li, Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system. Materials (Basel) (2017). https://doi.org/10.3390/ma10030305

    Article  Google Scholar 

  16. G. Singh, J.-M. Missiaen, D. Bouvard, J.-M. Chaix, Copper extrusion 3D printing using metal injection moulding feedstock: Analysis of process parameters for green density and surface roughness optimization. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2020.101778

    Article  Google Scholar 

  17. S. Singamneni, M.P. Behera, D. Truong, M.J. Le Guen, E. Macrae, K. Pickering, Direct extrusion 3D printing for a softer PLA-based bio-polymer composite in pellet form. J. Mater. Res. Technol. 15, 936–949 (2021). https://doi.org/10.1016/j.jmrt.2021.08.044

    Article  Google Scholar 

  18. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. Part. B-Eng. 143, 172–196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  19. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mulhaupt, Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15), 10212–10290 (2017). https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  20. G. Singh, J.-M. Missiaen, D. Bouvard, J.-M. Chaix, Additive manufacturing of 17–4 PH steel using metal injection molding feedstock: analysis of 3D extrusion printing, debinding and sintering. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2021.102287

    Article  Google Scholar 

  21. A. Riaz, P. Töllner, A. Ahrend, A. Springer, B. Milkereit, H. Seitz, Optimization of composite extrusion modeling process parameters for 3D printing of low-alloy steel AISI 8740 using metal injection moulding feedstock. Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.110814

    Article  Google Scholar 

  22. G. Singh, J.-M. Missiaen, D. Bouvard, J.-M. Chaix, Copper additive manufacturing using MIM feedstock: adjustment of printing, debinding, and sintering parameters for processing dense and defectless parts. Int. J. Adv. Manuf. Technol. 115(1–2), 449–462 (2021). https://doi.org/10.1007/s00170-021-07188-y

    Article  Google Scholar 

  23. A.H. Aleni, I.F. Ituarte, A. Mohite, L. St-Pierre, J. Partanen, Comparing stiffness of solid and scaffold nano-TiO2 structures produced by material extrusion method. Ceram. Int. 44(2), 2231–2239 (2018). https://doi.org/10.1016/j.ceramint.2017.10.181

    Article  Google Scholar 

  24. A. Hadian, M. Fricke, A. Liersch, F. Clemens, Material extrusion additive manufacturing of zirconia parts using powder injection molding feedstock compositions. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.102966

    Article  Google Scholar 

  25. Y. Zhang, W. Huang, Comparisons of 304 austenitic stainless steel manufactured by laser metal deposition and selective laser melting. J. Manuf. Process. 57, 324–333 (2020). https://doi.org/10.1016/j.jmapro.2020.06.042

    Article  Google Scholar 

  26. J. Xuan, Y. Liu, L. Xu, S. Bai, Y. Xin, L. Wang, G. Zhang, Y. Su, L. Xue, L. Li, Investigation of acidity on corrosion behavior and surface properties of SS304 in simulated PEMFC cathode environments. Int. J. Hydrogen Energy 47(54), 22938–22951 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.077

    Article  Google Scholar 

  27. W. Huang, Y. Zhang, W. Dai, R. Long, Mechanical properties of 304 austenite stainless steel manufactured by laser metal deposition. Mater. Sci. Eng. A 758, 60–70 (2019). https://doi.org/10.1016/j.msea.2019.04.108

    Article  Google Scholar 

  28. Y.T. Sun, X. Kong, Z.B. Wang, Superior mechanical properties and deformation mechanisms of a 304 stainless steel plate with gradient nanostructure. Int. J. Plast. (2022). https://doi.org/10.1016/j.ijplas.2022.103336

    Article  Google Scholar 

  29. H. Miyanaji, N. Momenzadeh, L. Yang, Effect of powder characteristics on parts fabricated via binder jetting process. Rapid Prototyp J 25(2), 332–342 (2019). https://doi.org/10.1108/rpj-03-2018-0069

    Article  Google Scholar 

  30. M. Moghadasi, W. Du, M. Li, Z. Pei, C. Ma, Ceramic binder jetting additive manufacturing: effects of particle size on feedstock powder and final part properties. Ceram. Int. 46(10), 16966–16972 (2020). https://doi.org/10.1016/j.ceramint.2020.03.280

    Article  Google Scholar 

  31. S. Rolere, U. Soupremanien, M. Bohnke, M. Dalmasso, C. Delafosse, R. Laucournet, New insights on the porous network created during solvent debinding of powder injection-molded (PIM) parts, and its influence on the thermal debinding efficiency. J. Mater. Process. Technol. (2021). https://doi.org/10.1016/j.jmatprotec.2021.117163

    Article  Google Scholar 

  32. Y. Zhang, C. Zhi, J. Wang, Study on termal oxidative degradation process of Cl-PP. Polym. Mater. Sci. Eng. 11, 6–86 (1995). https://doi.org/10.16865/j.cnki.1000-7555.1995.06.018

    Article  Google Scholar 

  33. G. Matula, B. Tomiczek, M. Król, A. Szatkowska, M.E. Sotomayor, Application of thermal analysis in the selection of polymer components used as a binder for metal injection moulding of Co–Cr–Mo alloy powder. J. Therm. Anal. Calorim. 134(1), 391–399 (2018). https://doi.org/10.1007/s10973-018-7543-x

    Article  Google Scholar 

  34. M. Sadaf, M. Bragaglia, F. Nanni, A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J. Manuf. Process. 67, 141–150 (2021). https://doi.org/10.1016/j.jmapro.2021.04.055

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project under Grant No. 2021YFB3701500, the Science and Technology Service Network Initiative of Chinese Academy of Sciences under Grant No. KFJ-STS-QYZD-2021-10-002, and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LZ22E030003.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis: TX, YL, HZ, and SS; writing—original draft preparation: TX and FL; writing—review and editing: YC, ZL, and YG; funding acquisition: ZL and GX. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhixiang Li or Yaqiong Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Long, F., Liang, Y. et al. 3D extrusion printing of 304 stainless steel/polypropylene composites and sintering process optimization. Appl. Phys. A 129, 285 (2023). https://doi.org/10.1007/s00339-023-06470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06470-y

Keywords

Navigation