Skip to main content
Log in

Ethylene sensor based on graphene oxide for fruit ripeness sensing application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, a conductive type Graphene Oxide (GO)-based pellet sensor has been fabricated and fruit ripeness condition is monitored via Ethylene gas sensing. GO was prepared by standard Hummer’s method, and morphological and structural characterizations have been performed using field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and Raman spectroscopy analysis. Four different types of fruits of same weight (orange, banana, guava, and mango) were used for sensor response measurements. Fruit samples were kept in a closed chamber at room temperature, and the change in conductivity of the sensor pellet was observed with increase in emitted Ethylene concentration in the chamber which was cross-verified with standard MSR sensor. The sensor showed almost linear response in the Ethylene concentration range of 40–120 PPM, and it was observed that orange samples produce maximum response for the GO pellet sensor with a sensitivity of 0.06 µAmp/PPM for a fixed exposure time. The sensor was found capable to successfully differentiate between four individual fruit samples in perfect ripening condition which cloud be utilized in fruit detector e-nose application. Also, the sensor pallets showed good reproducibility and repeatability which makes them ideal for cost-efficient measurement of Ethylene gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study are mostly available within the article. The rest are available from the corresponding author upon reasonable request.

References

  1. M. Sarkar, N. Gupta, M. Assaad, Optical Soc. Am. 58, 6396–6405 (2019)

    Google Scholar 

  2. A. U. Alim, P. Rathi, H. Beshai, G. K. Sarabha, M. J. Deen, MDPI, Sensors 21, 1–30 (2021)

  3. S. Rawat, Asian J. Plant Sci. Res 5, 47–56 (2015)

    Google Scholar 

  4. A. Sahgal, H.M. La, W. Hayduk, Can. J. Chem. Eng. 56, 354–357 (1978)

    Article  Google Scholar 

  5. N. Keller, M. N. Ducamp, D. Robert, V. Keller, ACS Publications 5029–5070 (2013)

  6. N. Iqbal, N.A. Khan, A. Ferrante, A. Trivellini, A. Francini, M.I.R. Khan, Front. Plant Sci. 8, 1–19 (2017)

    Google Scholar 

  7. M. E. Saltveit, Elsevier 279–292 (1999)

  8. S. Janssen, K. Schmitt, M. Blanke, M. L. Bauersfeld, J. Wollenstein, W. Lang, R. Soc. Publ. 1–21 (2022)

  9. N.A. Zaidi, M.W. Tahir, P.P. Vinayaka, F. Lucklum, M. Vellekoop, W. Lang, Proc. Eng. 168, 380–383 (2016)

    Article  Google Scholar 

  10. J. F. M. Oudenhoven, M. A. G. Zevenbergen, W. Knoben, R. V. Schaijk, 224th ESC Meeting (2013)

  11. S. Janssen, K. Schmitt, M. Blanke, M.L. Bauersfeld, J. Wollenstein, W. Lang, R. Soc, Publ. 372, 01–21 (2014)

    Google Scholar 

  12. M. Cristescu, J. Mandon, D. Arslanov, J. M. D. Pessemier, C. Hermans, F. J. M. Harren, F. J. M. Oxford University Press, 01–14 (2012)

  13. C. Popa, MDPI, Molecules 24, 1144 (2019)

  14. F. Perrozzi, S. Prezioso, L. Ottavino, J. Phys. 27, 1–21 (2015)

    Google Scholar 

  15. L. Sun, Chinese Tournal of Chemical Enjineering 27, 2251–2260 (2019)

    Article  Google Scholar 

  16. A.S.M. LftekharUddin, D.T. Phan, G.S. Chung, Sens. Actuat. B 207, 362–369 (2015)

    Article  Google Scholar 

  17. M. Yang, Y. Wang, D. Dong, Z. Xu, Y. Liu, N. Hu, E. Siu-Wai, J. Zhao, C. Peng, Nanoscale Res. Lett. 14, 01–08 (2019)

    Article  ADS  Google Scholar 

  18. L. Guo, Y.W. Hao, P.L. Li, J.F. Song, R.Z. Yang, Z.Y. Fu, S.Y. Xie, J. Zhao, Y.L. Zhang, Sci. Rep. 8, 01–07 (2018)

    ADS  Google Scholar 

  19. K. Toda, R. Furue, S. Hayami, Anal. Chim. Acta 878, 43–53 (2015)

    Article  Google Scholar 

  20. A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, A. Sinotskii, R.S.C. Publishing, Nanoscale 5, 5426–5434 (2013)

    Article  ADS  Google Scholar 

  21. N.I. Zabba, K.L. Foo, U. Hashmim, J. Tan, W. Liu, C.H. Voon, Proc. Eng. 184, 469–477 (2017)

    Article  Google Scholar 

  22. S.N. Alam, N. Sharma, L. Kumar, Sci. Res. Publ. 10, 1–18 (2017)

    Google Scholar 

  23. B. Paulchamy, G. Arthi, B.D. Lignesh, J. Nanomed. Nanotechnol. 6, 1–4 (2015)

    Google Scholar 

  24. S. Drewnik, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Mora, M. Setkiewicz, Sensor 2016, 1–16 (2016)

    Google Scholar 

  25. S. Rana, S. Maddila, S.B. Jonnalagadda, R. Soc. Chem. 5, 3235–3241 (2015)

    Google Scholar 

  26. Y. Sheng, X. Tang, E. Peng, J. Xue, R. Soc, Chem. 1, 512–521 (2013)

    Google Scholar 

  27. Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Carbon 48, 1124–1130 (2010)

    Article  Google Scholar 

  28. S.N. Alam, N. Sharma, L. Kumar, Sci. Res. Publ. 6, 01–18 (2017)

    Google Scholar 

  29. M. Mallick, J. Das, Invertis J. Sci. Technol. 10, 178–182 (2017)

    Article  Google Scholar 

  30. S. Bykkam, V. K. Rao, S. C. CH, T. Thunugunta, Int. J. Adv. Biotechnol. Res. 4, 142–146 (2013)

  31. L. Stobinski, B. Lesiak, B. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Elsevier 195, 145–154 (2014)

    Google Scholar 

  32. M. Mallick, S.M. Hossain, J. Das, Mater. Today 5, 9866–9870 (2018)

    Google Scholar 

  33. X. Wang, S. Nie, P. Zhangc, Y. Hua, J. Mater. Res. Technol. 9, 667–674 (2020)

    Article  Google Scholar 

  34. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. Prud’homme, I. A. Aksay, R. Car, Nano Lett. 8, 36–41 (2018)

  35. A. Kaniyoor, S. Ramaprabhua, AIP Adv. 2, 1–13 (2012)

    Article  Google Scholar 

  36. W. Oh, F. Zhang, Asian J. Chem. 23, 875–879 (2011)

    Google Scholar 

  37. Y. F. Sun, S. B. Liu, F. Li. Meng, J. Y. Liu, Z. Jin, L. T. Kong, J. H. Liu, IOP Publ, 12, 022082 (2019)

  38. Y. Xing, H. Zhu, G. Chang, K. Yu, F. Yue, MDPI, Sensors, 667, 1–8 (2019)

  39. Y. Murashima, M.R. Karim, R. Furue, T. Matsui, H. Takehira, K. Wakata, K. Toda, R. Ohtani, M. Nakamura, S. Hayami, R. Soc, Chem. 3, 1–6 (2016)

    Article  Google Scholar 

  40. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, R. Soc, Chem. 39, 228–240 (2010)

    Google Scholar 

  41. J. Kathirvelan, R. Vijayaraghavan, A. Thomas, Sens. Rev. 37, 147–154 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Mintu Mallick acknowledges the Rajiv Gandhi National Fellowship for SC sponsored by UGC, Government of India. The authors wish to thank Prof. Joydeep Chowdhury for Raman Spectroscopy measurement. The authors also acknowledge Department of Physics, Jadavpur University, Kolkata for providing instrumental facilities like XRD, FESEM, etc. funded by DST (FIST II Programme), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayoti Das.

Ethics declarations

Conflict of interest

The authors declare that there are no known conflicts of interest associated with the work presented here, and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, M., Basu, D., Hossain, S.M. et al. Ethylene sensor based on graphene oxide for fruit ripeness sensing application. Appl. Phys. A 129, 140 (2023). https://doi.org/10.1007/s00339-023-06413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06413-7

Keywords

Navigation