Skip to main content
Log in

Influence of samarium doping on enhancing the photosensing capability of nebulizer-sprayed bismuth sulfide thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nebulizer spray pyrolysis (NSP) technique is employed to analyze the effect of samarium doping on the structural, morphological, optical, and electrical conductivity in Bi2S3 thin films deposited on bare glass substrates by varying the doping concentration from 0 to 3 wt %. Further, their photosensing properties are also studied to utilize the prepared Bi2S3:Sm thin films for photo-detecting applications. The Bi2S3:Sm thin films are found to be in an orthorhombic structure. The data from X-ray diffraction are used to calculate the value of crystallite size, microstrain, and lattice parameters, as well as the volume of the unit cell. 2% Sm-doped Bi2S3 film exhibited a maximum crystallite size of 38 nm and a lower micro-strain value. FESEM micrographs of 2% Sm-doped film show well-defined larger grains. The optical band gap is found to vary between 2.02 and 2.26 eV when the Sm doping concentration is varied. These thin films' absorption is higher around the ultraviolet region of the electromagnetic spectra. The electrical properties exhibited an increase in photocurrent under illumination. A higher responsivity of 9.57 × 10–1 AW–1, detectivity of 1.97 × 1011 Jones, and external quantum efficiency of 309% are recorded for Bi2S3:Sm (2%) thin film. The response and recovery time of the Bi2S3:Sm (2%)-based photodetector are observed to be 1.6 and 1.8 s, respectively. These favorable characteristics of samarium-doped Bi2S3 thin films recommend its potential usage in low-cost, high-performance UV photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The corresponding author’s data supporting this study's findings are available upon reasonable request.

References

  1. M.-B. Lien, C.-H. Liu, I.Y. Chun, S. Ravishankar, H. Nien, M. Zhou, J.A. Fessler, Z. Zhong, T.B. Norris, Ranging and light field imaging with transparent photodetectors. Nat. Photonics 14(3), 143–148 (2020). https://doi.org/10.1038/s41566-019-0567-3

    Article  ADS  Google Scholar 

  2. G. Konstantatos, Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9(1), 5266 (2018). https://doi.org/10.1038/s41467-018-07643-7

    Article  ADS  Google Scholar 

  3. R. Yotter, D. Wilson, A review of photodetectors for sensing light-emitting reporters in biological systems. Sensors J IEEE 3, 288–303 (2003). https://doi.org/10.1109/JSEN.2003.814651

    Article  ADS  Google Scholar 

  4. Y. Zhou, X. Qiu, Z. Wan, Z. Long, S. Poddar, Q. Zhang, Y. Ding, C.L.J. Chan, D. Zhang, K. Zhou et al., Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy 100, 107516 (2022). https://doi.org/10.1016/j.nanoen.2022.107516

    Article  Google Scholar 

  5. H. Melchior, M.B. Fisher, F.R. Abrams, Photodetectors for optical communication systems. Proc. IEEE 58(10), 1466–1486 (1970). https://doi.org/10.1109/PROC.1970.7972

    Article  Google Scholar 

  6. S. Liu, X. Zhang, X. Gu, D. Ming, Photodetectors based on two dimensional materials for biomedical application. Biosens. Bioelectron. 143, 111617 (2019). https://doi.org/10.1016/j.bios.2019.111617

    Article  Google Scholar 

  7. S. Bellani, A. Bartolotta, A. Agresti, G. Calogero, G. Grancini, A. Di Carlo, E. Kymakis, F. Bonaccorso, Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 50(21), 11870–11965 (2021). https://doi.org/10.1039/D1CS00106J

    Article  Google Scholar 

  8. S. Li, Z. Zhang, X. Chen, W. Deng, Y. Lu, M. Sui, F. Gong, G. Xu, X. Li, F. Liu et al., A high-performance in-memory photodetector realized by charge storage in a van Der Waals MISFET. Adv Mater. 34(10), 2107734 (2022). https://doi.org/10.1002/adma.202107734

    Article  Google Scholar 

  9. D. Li, C. Lan, A. Manikandan, S. Yip, Z. Zhou, X. Liang, L. Shu, Y.-L. Chueh, N. Han, J.C. Ho, Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun. 10(1), 1664 (2019). https://doi.org/10.1038/s41467-019-09606-y

    Article  ADS  Google Scholar 

  10. A.G.U. Perera, H.X. Yuan, S.K. Gamage, W.Z. Shen, M.H. Francombe, GaAs multilayer P+-I homojunction far—infrared detectors. J. Appl. Phys. 81(7), 2–5 (1997). https://doi.org/10.1063/1.364356

    Article  Google Scholar 

  11. F. Sizov, V. Zabudsky, S. Dvoretskii, V. Petryakov, O. Golenkov, K. Andreyeva, Z. Tsybrii, Two-color detector: mercury-cadmium-telluride as a terahertz and infrared detector. Appl. Phys. Lett. 106, 82104 (2015). https://doi.org/10.1063/1.4913590

    Article  Google Scholar 

  12. B. Chitara, B.S.C. Kolli, F. Yan, Near-infrared photodetectors based on 2D Bi2S3. Chem. Phys. Lett. 804, 139876 (2022). https://doi.org/10.1016/j.cplett.2022.139876

    Article  Google Scholar 

  13. N. Cates, M. Bernechea, Research update: bismuth based materials for photovoltaics. APL Mater. 6(8), 84503 (2018). https://doi.org/10.1063/1.502654

    Article  Google Scholar 

  14. R. Lokhande, S. Thakur, P.A. Chate, Chemical deposition of bismuth sulphide thin films using malonic acid ligand. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03658-3

    Article  Google Scholar 

  15. Y. Chen, B. Mei, H. Liu, Z. Sun, H. Zhang, One-step rapid deposition of Bi2S3 thin film and comprehensive study of its photoelectrochemical activity. Cryst. Growth Des. 22(7), 4203–4209 (2022). https://doi.org/10.1021/acs.cgd.2c00230

    Article  Google Scholar 

  16. S. Mansoor Ali, S. Aldawood, M.S. AlGarawi, S.S. AlGhamdi, H. Kassim, A. Aziz, Influence of gamma irradiation on structural, optical, and electrical characterization of Bi2S3 thin films. J. Mater. Sci. Mater. Electron. 33(24), 18982–18990 (2022). https://doi.org/10.1007/s10854-022-08711-x

    Article  Google Scholar 

  17. T. Fazal, S. Iqbal, M. Shah, B. Ismail, N. Shaheen, A.I. Alharthi, N.S. Awwad, H.A. Ibrahim, Correlation between structural, morphological and optical properties of Bi2S3 thin films deposited by various aqueous and non-aqueous chemical bath deposition methods. Results Phys. 40, 105817 (2022). https://doi.org/10.1016/j.rinp.2022.105817

    Article  Google Scholar 

  18. V.V. Killedar, S.N. Katore, C.H. Bhosale, Preparation, and characterization of electrodeposited Bi2S3 thin films prepared from non-aqueous media. Mater. Chem. Phys. 64(2), 166–169 (2000). https://doi.org/10.1016/S0254-0584(99)00259-X

    Article  Google Scholar 

  19. Y.-C. Liang, T.-H. Li, Controllable morphology of Bi2S3 nanostructures formed via hydrothermal vulcanization of Bi2O3 thin-film layer and their photoelectrocatalytic performances. Nanotechnol Rev. 11(1), 284–297 (2022). https://doi.org/10.1515/ntrev-2022-0016

    Article  Google Scholar 

  20. J. Arumugam, A. George, A.D. Raj, A.A. Irudayaraj, R.L. Josephine, S.J. Sundaram, A.M. Al-Mohaimeed, W.A. Al-onazi, M.S. Elshikh, K. Kaviyarasu, Construction and characterization of photodiodes prepared with Bi2S3 nanowires. J. Alloys Compd. 863, 158681 (2021). https://doi.org/10.1016/j.jallcom.2021.158681

    Article  Google Scholar 

  21. Ö. Karsandık, T. Özdal, H. Kavak, Influence of thickness and annealing temperature on properties of solution-processed bismuth sulfide thin films. J. Mater. Sci. Mater. Electron. 33(22), 18014–18027 (2022). https://doi.org/10.1007/s10854-022-08662-3

    Article  Google Scholar 

  22. K.V. Ganapathy, K. Tamilarasan, C. Rangasami, A.M.S. Arulanantham, Effect of spray volume on the properties of Cu2ZnSnS4 absorber thin film fabricated through nebulizer assisted spray pyrolysis technique. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab3eee

    Article  Google Scholar 

  23. R. Sakthivel, S. Kubendhiran, S.M. Chen, Facile one-pot sonochemical synthesis of Ni doped bismuth sulphide for the electrochemical determination of promethazine hydrochloride. Ultrason. Sonochem. 54, 68–78 (2019). https://doi.org/10.1016/j.ultsonch.2019.02.013

    Article  Google Scholar 

  24. S. Wang, J. Li, Y. Fu, Z. Zhuang, Z. Liu, Indium-doped mesoporous Bi2S3-based electrochemical interface for highly sensitive detection of Pb(II). Microchem. J. 166, 106251 (2021). https://doi.org/10.1016/j.microc.2021.106251

    Article  Google Scholar 

  25. F. Du, Z. Lai, H. Tang, H. Wang, C. Zhao, Construction and application of BiOCl/Cu-doped Bi2S3 composites for highly efficient photocatalytic degradation of ciprofloxacin. Chemosphere 287, 132391 (2022). https://doi.org/10.1016/j.chemosphere.2021.132391

    Article  ADS  Google Scholar 

  26. Z.-Y. Wang, J. Guo, J. Feng, Z.-H. Ge, Effects of NbCl5-doping on the thermoelectric properties of polycrystalline Bi2S3. J. Solid State Chem. 297, 122043 (2021). https://doi.org/10.1016/j.jssc.2021.122043

    Article  Google Scholar 

  27. J. Guo, Y.-K. Zhu, L. Chen, Z.-Y. Wang, Z.-H. Ge, J. Feng, High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl Co-doping in solution synthesis process. J. Mater. Sci. Technol. 100, 51–58 (2022). https://doi.org/10.1016/j.jmst.2021.05.057

    Article  Google Scholar 

  28. Q. Chen, P. Lu, Y. Hao, M. Zhang, Morphology, structure and properties of Bi2S3 nanocrystals: role of mixed valence effects of cobalt. J. Mater. Sci. Mater. Electron. 32(19), 24459–24483 (2021). https://doi.org/10.1007/s10854-021-06925-z

    Article  Google Scholar 

  29. M. Iqbal, A. Ibrar, A. Ali, S. Hussain, S. Shad, S. Ullah, T. Alshahrani, J. Hakami, F. Khan, K.H. Thebo, Facile synthesis of Mn doped Bi2S3 photocatalyst for efficient degradation of organic dye under visible-light irradiation. J. Mol. Struct. 1267, 133598 (2022). https://doi.org/10.1016/j.molstruc.2022.133598

    Article  Google Scholar 

  30. H. Moreno-García, S. Messina, M. Calixto-Rodriguez, H. Martínez, Physical properties of chemically deposited Bi2S3 thin films using two post-deposition treatments. Appl. Surf. Sci. 311, 729–733 (2014). https://doi.org/10.1016/j.apsusc.2014.05.147

    Article  ADS  Google Scholar 

  31. S.L. Jenish, S. Valanarasu, B. Prakash, K. Veerathangam, S. Vinoth, A.M. Al-Enzi, M. Ubaidullah, V.R.M. Reddy, A. Karim, Improved optical and electrical properties of Fe doped ZnO nanostructures facilely deposited by low-cost SILAR method for photosensor applications. Surf Interfac 31, 102071 (2022). https://doi.org/10.1016/j.surfin.2022.102071

    Article  Google Scholar 

  32. H.E. Okur, N. Bulut, T. Ates, O. Kaygili, Structural and optical characterization of Sm-doped ZnO nanoparticles. Bull. Mater. Sci. 3, 1–9 (2019). https://doi.org/10.1007/s12034-019-1877-2

    Article  Google Scholar 

  33. T.O. Ajiboye, D.C. Onwudiwe, Bismuth sulfide based compounds: properties, synthesis, and applications. Results Chem. 3, 100151 (2021). https://doi.org/10.1016/j.rechem.2021.100151

    Article  Google Scholar 

  34. T. Patel, V. Sharma, R. Bhatt, V. Ganesan, G. Okram, A catalyst-free new polyol method synthesized hot-pressed Cu-doped Bi2S3 nanorods and their thermoelectric properties. Nano Res. (2016). https://doi.org/10.1007/s12274-016-1207-6

    Article  Google Scholar 

  35. A. Jayachandran, A. George, D. Raj, M. Selvaraj, A.A. Alphonse, T. Pazhanivel, J. Rathinadurai Louis, B. Kandasamy, Role of surfactant in tailoring the properties of Bi2S3 nanoparticles for photocatalytic degradation of methylene blue dye. J. Mater. Sci. Mater. Electron. 33, 1–12 (2022). https://doi.org/10.1007/s10854-021-07007-w

    Article  Google Scholar 

  36. A. Sarkar, A.B. Ghosh, N. Saha, A.K. Dutta, D.N. Srivastava, P. Paul, B. Adhikary, Enhanced photocatalytic activity of Eu-doped Bi2S3 nanoflowers for degradation of organic pollutants under visible light illumination. Catal. Sci. Technol. 5(8), 4055–4063 (2015). https://doi.org/10.1039/C5CY00473J

    Article  Google Scholar 

  37. X. Yu, C. Cao, H. Zhu, Synthesis and photoluminescence properties of Bi2S3 nanowires via surfactant micelle-template inducing reaction. Solid State Commun. 134(4), 239–243 (2005). https://doi.org/10.1016/j.ssc.2005.01.035

    Article  ADS  Google Scholar 

  38. A.K. Srivastava, M. Deepa, N. Bahadur, M.S. Goyat, Influence of Fe doping on nanostructures and photoluminescence of sol–gel derived ZnO. Mater. Chem. Phys. 114(1), 194–198 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.005

    Article  Google Scholar 

  39. K. Bandopadhyay, J. Mitra, Zn interstitials and O vacancies responsible for N-type ZnO: what do the emission spectra reveal? RSC Adv. 5(30), 23540–23547 (2015). https://doi.org/10.1039/C5RA00355E

    Article  ADS  Google Scholar 

  40. D. Behera, B.S. Acharya, Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence, and laser raman spectroscopy. J. Lumin. 128(10), 1577–1586 (2008). https://doi.org/10.1016/j.jlumin.2008.03.006

    Article  Google Scholar 

  41. D.R. Kumar, K.S. Ranjith, L.R. Nivedita, R.T.R. Kumar, Effect of samarium doping on structural, optical and magnetic properties of vertically aligned ZnO nanorod arrays. J. Rare Earths 35(10), 1002–1007 (2017). https://doi.org/10.1016/S1002-0721(17)61005-6

    Article  Google Scholar 

  42. R. Panmand, G. Kumar, S. Mahajan, M. Kulkarni, D.P. Amalnerkar, B. Kale, S. Gosavi, Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced verdet constant. J. Appl. Phys. 109, 33101 (2011). https://doi.org/10.1063/1.3533398

    Article  Google Scholar 

  43. J. Xu, J. Yang, P. Zhang, Q. Yuan, Y. Zhu, Y. Wang, M. Wu, Z. Wang, M. Chen, Preparation of 2D square-like Bi2S3 -BiOCl heterostructures with enhanced visible light-driven photocatalytic performance for dye pollutant degradation. Water Sci. Eng. (2017). https://doi.org/10.1016/j.wse.2017.12.010

    Article  Google Scholar 

  44. S. Morawiec, J. Holovský, M.J. Mendes, M. Müller, K. Ganzerová, A. Vetushka, M. Ledinský, F. Priolo, A. Fejfar, I. Crupi, Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Sci. Rep. 2016(6), 1–10 (2015). https://doi.org/10.1038/srep22481

    Article  Google Scholar 

  45. A. Kathalingam, S. Valanarasu, T. Ahamad, S.M. Alshehri, H.-S. Kim, Spray pressure variation effect on the properties of CdS thin films for photodetector applications. Ceram. Int. 47(6), 7608–7616 (2021). https://doi.org/10.1016/j.ceramint.2020.11.100

    Article  Google Scholar 

  46. Y. Kamnik, I. Berkutov, V. Andrievskii, Spin-orbit interaction in thin bismuth films. Low Temp. Phys. 31, 326 (2005). https://doi.org/10.1063/1.1884436

    Article  ADS  Google Scholar 

  47. S. Aveline, Y.C. Chan, Y.L. Lam, Evaluation of Schottky contact parameters in metal–semiconductor–metal photodiode structures. Appl. Phys. Lett. 77(2), 274–276 (2000). https://doi.org/10.1063/1.126948

    Article  ADS  Google Scholar 

  48. B. Hwang, Y. Park, J.-S. Lee, Impact of grain size on the optoelectronic performance of 2d ruddlesden-popper perovskite-based photodetectors. J. Mater. Chem. C (2021). https://doi.org/10.1039/D0TC04350H

    Article  Google Scholar 

  49. R. Ade, S.S. Kumar, S. Valanarasu, S.S. Kumar, S. Sasikumar, V. Ganesh, Y. Bitla, H. Algarni, I.S. Yahia, Enhanced optoelectronic properties of Ti-doped ZnO nanorods for photodetector applications. Ceram. Int. 47(17), 24031–24038 (2021). https://doi.org/10.1016/j.ceramint.2021.05.112

    Article  Google Scholar 

  50. M. Shkir, A. Ben, G. Trabelsi, F.H. Alkallas, S. Alfaify, B. Pandit, Improved optoelectronic properties of nanostructured Eu doped Bi2S3 thin films for the detection of U.V. light. Crystals (2022). https://doi.org/10.3390/cryst12101329

    Article  Google Scholar 

  51. S. Rajeswari, M. Ibrahim, I. Raj, M. Imran, S. Alfaify, M. Shkir, Noticeably enhanced photosensing properties of Fe-doped Bi2S3 thin films developed by nebulizer spray pyrolysis technique for photosensor applications. Sensors Actuators A Phys. 345, 113759 (2022). https://doi.org/10.1016/j.sna.2022.113759

    Article  Google Scholar 

  52. W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu, D. Ma, X. Dai, Y. Xiang, J. Li, D. Fan et al., Facile fabrication and characterization of two-dimensional bismuth(iii) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 10(5), 2404–2412 (2018). https://doi.org/10.1039/c7nr09046c

    Article  Google Scholar 

  53. J. Chao, S. Xing, Z. Liu, X. Zhang, Y. Zhao, L. Zhao, Q. Fan, Large-scale synthesis of Bi2S3 nanorods and nanoflowers for flexible near-infrared laser detectors and visible light photodetectors. Mater. Res. Bull. 2018(98), 194–199 (2017). https://doi.org/10.1016/j.materresbull.2017.10.026

    Article  Google Scholar 

  54. S. Veeralingam, S. Badhulika, Bi-metallic sulphides 1D Bi2S3 microneedles/1D RuS2 nano-rods based N-N heterojunction for large area, flexible and high-performance broadband photodetector. J. Alloys Compd. 885, 160954 (2021). https://doi.org/10.1016/j.jallcom.2021.160954

    Article  Google Scholar 

  55. A. Das Mahapatra, D. Basak, Enhanced ultraviolet photosensing properties in Bi2S3 nanoparticles decorated ZnO nanorods’ heterostructure. J. Alloys Compd. 797, 766–774 (2019). https://doi.org/10.1016/j.jallcom.2019.05.160

    Article  Google Scholar 

  56. X. Xu, C. Fan, Y. Wang, Z. Qi, B. Dai, H. Jiang, S. Wang, Q. Zhang, In Plane epitaxy of Bi2S3 nanowire arrays for ultrasensitive NIR photodetectors. Phys. Status Solidi Rapid Res. Lett. (2020). https://doi.org/10.1002/pssr.202000384

    Article  Google Scholar 

  57. X. Pan, T. Zhang, Q. Lu, W. Wang, Z. Ye, High responsivity ultraviolet detector based on novel SnO2 nanoarrays. RSC Adv. 9, 37201–37206 (2019). https://doi.org/10.1039/C9RA03999F

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at K.K.U. for funding to carry this work through the research groups program under grant number R.G.P. 2/147/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ganesh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article doesn’t contain any studies involving animals performed by any authors. Also, this article does not have any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunavathy, K.V., Arulanantham, A.M.S., Raj, I.L.P. et al. Influence of samarium doping on enhancing the photosensing capability of nebulizer-sprayed bismuth sulfide thin films. Appl. Phys. A 129, 141 (2023). https://doi.org/10.1007/s00339-023-06389-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06389-4

Keywords

Navigation