Skip to main content
Log in

Impact of crystallinity on coexistence of negative differential resistance (NDR) and write once read many (WORM) resistive switching memory in multiferroic BiFeO3 (BFO)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The materials exhibiting the negative differential resistance (NDR) and write once read many (WORM), simultaneously are potential candidates for electronic devices such as oscillators and permanent storage devices. Here in, we investigated the impact of crystallinity on coexistence of NDR and WORM resistive switching on Cu(top contact)/BiFeO3 (amorphous/crystalline) (BFO as active material)/FTO (bottom electrode) memory device. The multiferroic BiFeO3 (BFO) active material is synthesized using a low-cost solution process on FTO substrates and thermal evaporation was used for deposing metal copper as the top contacts. The present device Cu/am-BFO/FTO showed the coexistence of WORM with high Ion/Ioff ratio of ~ 103 and NDR with peak (Vp) and valley (Vv) voltages ~  −  0.26 V and − 1.23 V, respectively. The power consumption is significantly low, ~ 66.94 µW in NDR region for am-BFO. The device with active crystalline material, i.e., Cu/c-BFO/FTO exhibits peak (Vp) and valley (Vv) voltages ~  −  1.22 V and − 1.40 V, respectively, and the power consumption is ~ 1.08 mW for devices based on crystalline BFO as an active material. The retention and endurance values are ~ 103 s and 103 cycles. The repeatability of the bipolar resistive switching of c-BFO is measured for 100 cycles, and relative cumulative Weibull distribution plots show the filament’s stability for both set and reset states. Thus, these results demonstrate the interplay between different switching characteristics in BFO, which can be tailored by manipulating the crystallinity of the active material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used in the present work is available in the manuscript.

References

  1. C.-C. Hsu, W.-C. Jhang, Y.-S. Chien, C.-W. Cheng, M. Joodaki, High on\off current ratio titanium oxynitride write-once-read-many-times memory. Semicond Sci Technol 36(6), 06LT01 (2021). https://doi.org/10.1088/1361-6641/abf664

    Article  Google Scholar 

  2. M.S. Kadhim, F. Yang, B. Sun, Y. Wang, T. Guo, Y. Jia, L. Yuan, Y. Yu, Y. Zhao, A resistive switching memory device with a negative differential resistance at room temperature. Appl Phys Lett 113(5), 53502 (2018). https://doi.org/10.1063/1.5037191

    Article  ADS  Google Scholar 

  3. X. Liu, M.T. Mayer, D. Wang, Negative differential resistance and resistive switching behaviors in Cu2S nanowire devices. Appl Phys Lett 96(22), 223103 (2010). https://doi.org/10.1063/1.3442919

    Article  ADS  Google Scholar 

  4. X. Ran, P. Hou, J. Song, H. Song, X. Zhong, J. Wang, Negative differential resistance effect in resistive switching devices based on H-LuFeO3/CoFe2O4 heterojunctions. Phys. Chem. Chem. Phys. 22(10), 5819–5825 (2020). https://doi.org/10.1039/D0CP00530D

    Article  Google Scholar 

  5. M. Ismail, S. Kim, Negative differential resistance effect and dual bipolar resistive switching properties in a transparent Ce-based devices with opposite forming polarity. Appl Surf Sci. 530, 147284 (2020). https://doi.org/10.1016/j.apsusc.2020.147284

    Article  Google Scholar 

  6. B. Qu, Q. Lin, T. Wan, H. Du, N. Chen, X. Lin, D. Chu, Transparent and flexible write-once-read-many ({WORM}) memory device based on egg albumen. J Phys D Appl Phys. 50(31), 315105 (2017). https://doi.org/10.1088/1361-6463/aa76d6

    Article  ADS  Google Scholar 

  7. Z. Chen, Y. Zhang, Y. Yu, Y. Che, L. Jin, Y. Li, Q. Li, T. Li, H. Dai, J. Yao, Write once read many times resistance switching memory based on all-inorganic perovskite CsPbBr3 quantum dot. Opt Mater 90, 123–126 (2019). https://doi.org/10.1016/j.optmat.2019.01.069

    Article  ADS  Google Scholar 

  8. A.K. Shringi, A. Betal, S. Sahu, M. Kumar, Write-once-read-many-times resistive switching behavior of amorphous barium titanate based device with very high on-off ratio and stability. Appl Phys Lett. 118(26), 263505 (2021). https://doi.org/10.1063/5.0050448

    Article  ADS  Google Scholar 

  9. T. Shi, R. Yang, X. Guo, Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices. Solid State Ionics 296, 114–119 (2016). https://doi.org/10.1016/j.ssi.2016.09.001

    Article  Google Scholar 

  10. J. He, J. Zhu, C. Ma, J. Lu, Z. Hu, Negative differential resistance and multilevel resistive switching in BaSrTiO3 films. Appl Phys Lett 115(7), 72101 (2019). https://doi.org/10.1063/1.5113883

    Article  Google Scholar 

  11. M. Arahata, Y. Nishi, T. Kimoto, Effects of TiO2 crystallinity and oxygen composition on forming characteristics in Pt/TiO2/Pt resistive switching cells. AIP Adv 8(12), 125010 (2018). https://doi.org/10.1063/1.5060639

    Article  ADS  Google Scholar 

  12. C.-S. Li, S.-W. Kuo, Y.-T. Wu, F.-Y. Fu, I.-C. Ni, M.-H. Chen, C.-I. Wu, Forming-free, nonvolatile, and flexible resistive random-access memory using bismuth iodide/van der waals materials heterostructures. Adv Mater Interfac. 7(22), 2001146 (2020)

    Article  Google Scholar 

  13. I.-S. Mok, J. Kim, K. Lee, Y. Kim, H. Sohn, H. Kim, Effect of crystallinity on the resistive switching behavior of HfAlOx films. J Korean Phys Soc 64(3), 419–423 (2014). https://doi.org/10.3938/jkps.64.419

    Article  Google Scholar 

  14. Capulong, J. O.; Briggs, B. D.; Bishop, S. M.; Hovish, M. Q.; Matyi, R. J.; Cady, N. C. Effect of Crystallinity on Endurance and Switching Behavior of HfOx-Based Resistive Memory Devices. In 2012 IEEE International Integrated Reliability Workshop Final Report; 2012; pp 22–25. https://doi.org/10.1109/IIRW.2012.6468907.

  15. C. Kumari, I. Varun, S.P. Tiwari, A. Dixit, Interfacial layer assisted, forming free, and reliable bipolar resistive switching in solution processed BiFeO3 thin films. AIP Adv. (2020). https://doi.org/10.1063/1.5134972

    Article  Google Scholar 

  16. S. Wu, J. Zhang, X. Liu, S. Lv, R. Gao, W. Cai, F. Wang, C. Fu, Micro-area ferroelectric, piezoelectric and conductive properties of single BiFeO3 nanowire by scanning probe microscopy. Nanomater (2019). https://doi.org/10.3390/nano9020190

    Article  Google Scholar 

  17. M.K. Singh, S. Ryu, H.M. Jang, Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry. Phys Rev B 72(13), 132101 (2005). https://doi.org/10.1103/PhysRevB.72.132101

    Article  ADS  Google Scholar 

  18. M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl Phys Lett 88(4), 1–3 (2006). https://doi.org/10.1063/1.2168038

    Article  Google Scholar 

  19. H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyayama, Raman scattering study of multiferroic BiFeO3 single crystal. J Magn Magn Mater 310, 2006–2008 (2007). https://doi.org/10.1016/j.jmmm.2006.10.282

    Article  Google Scholar 

  20. A. Mukherjee, S. Chakrabarty, N. Kumari, W.N. Su, S. Basu, Visible-light-mediated electrocatalytic activity in reduced graphene oxide-supported bismuth ferrite. ACS Omega 3(6), 5946–5957 (2018). https://doi.org/10.1021/acsomega.8b00708

    Article  Google Scholar 

  21. G. Yang, C.H. Jia, Y.H. Chen, X. Chen, W.F. Zhang, Negative differential resistance and resistance switching behaviors in BaTiO3 thin films. J Appl Phys (2014). https://doi.org/10.1063/1.4878236

    Article  Google Scholar 

  22. Y. Cai, Q. Yuan, Y. Ye, J. Liu, C. Liang, Coexistence of resistance switching and negative differential resistance in the α-Fe2O3 nanorod film. Phys. Chem. Chem. Phys. 18(26), 17440–17445 (2016). https://doi.org/10.1039/C6CP02192A

    Article  Google Scholar 

  23. S. Zhu, B. Sun, S. Ranjan, X. Zhu, G. Zhou, H. Zhao, S. Mao, H. Wang, Y. Zhao, G. Fu, Mechanism analysis of a flexible organic memristive memory with capacitance effect and negative differential resistance state. APL Mater (2019). https://doi.org/10.1063/1.5100019

    Article  Google Scholar 

  24. X.F. Dong, Y. Zhao, T.T. Zheng, X. Li, C.W. Wang, W.M. Li, Y. Shao, Y. Li, Coexistence of bipolar resistive switching and the negative differential resistance effect from a kesterite memristor. J Phys Chem C 125(1), 923–930 (2021). https://doi.org/10.1021/acs.jpcc.0c08205

    Article  Google Scholar 

  25. H. Tang, X. Tang, Y. Jiang, Q. Liu, W. Li, L. Luo, Bipolar resistive switching characteristics of amorphous SrTiO3 thin films prepared by the sol- gel process. J Asian Ceram Soc 7(3), 298–305 (2019). https://doi.org/10.1080/21870764.2019.1625499

    Article  Google Scholar 

  26. D. Jana, S. Samanta, S. Roy, Y.F. Lin, S. Maikap, Observation of resistive switching memory by reducing device size in a new Cr/CrOx/TiOx/TiN structure. Nano-micro Lett 7(4), 392–399 (2015). https://doi.org/10.1007/s40820-015-0055-3

    Article  Google Scholar 

  27. P. Basnet, D.G. Pahinkar, M.P. West, C.J. Perini, S. Graham, E.M. Vogel, Substrate dependent resistive switching in amorphous-HfOx memristors: an experimental and computational investigation. J Mater Chem C 8(15), 5092–5101 (2020). https://doi.org/10.1039/C9TC06736A

    Article  Google Scholar 

  28. H. Mähne, L. Berger, D. Martin, V. Klemm, S. Slesazeck, S. Jakschik, D. Rafaja, T. Mikolajick, Filamentary resistive switching in amorphous and polycrystalline Nb2O5 thin films. Solid State Electron 72, 73–77 (2012). https://doi.org/10.1016/j.sse.2012.01.005

    Article  ADS  Google Scholar 

  29. W. Hu, L. Zou, X. Chen, N. Qin, S. Li, D. Bao, Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method. ACS Appl Mater Interfac. 6(7), 5012–5017 (2014). https://doi.org/10.1021/am500048y

    Article  Google Scholar 

  30. P.C. Akshara, N. Basu, J. Lahiri, G. Rajaram, M.G. Krishna, Resistive switching behaviour of amorphous silicon carbide thin films fabricated by a single composite magnetron sputter deposition method. Bull Mater Sci 43(1), 123 (2020). https://doi.org/10.1007/s12034-020-02093-8

    Article  Google Scholar 

  31. K. Kim, W. Hong, C. Lee, W.-Y. Lee, D.W. Kim, H.J. Kim, H.-J. Kwon, H. Kang, J. Jang, Sol-gel-processed amorphous-phase zro2 based resistive random access memory. Mater Res Express. 8(11), 116301 (2021). https://doi.org/10.1088/2053-1591/ac3400

    Article  ADS  Google Scholar 

  32. K. Nam, J. Kim, W. Cho, C. Kim, H. Chung, Resistive switching in amorphous GeSe-based resistive random access memory. J Nanosci Nanotechnol. (2016). https://doi.org/10.1166/jnn.2016.13167

    Article  Google Scholar 

  33. Y. Feng, P. Huang, Z. Zhou, X. Ding, L. Liu, X. Liu, J. Kang, Negative differential resistance effect in Ru-based RRAM device fabricated by atomic layer deposition. Nanoscale Res Lett (2019). https://doi.org/10.1186/s11671-019-2885-2

    Article  Google Scholar 

  34. G. Zhou, S. Duan, P. Li, B. Sun, B. Wu, Y. Yao, X. Yang, J. Han, J. Wu, G. Wang, L. Liao, C. Lin, W. Hu, C. Xu, D. Liu, T. Chen, L. Chen, A. Zhou, Q. Song, Coexistence of negative differential resistance and resistive switching memory at room temperature in TiO x modulated by moisture. ACS Appl Electron Mater 1700567, 1–12 (2018). https://doi.org/10.1002/aelm.201700567

    Article  Google Scholar 

  35. S. Hong, T. Choi, J.H. Jeon, Y. Kim, H. Lee, H. Joo, I. Hwang, J. Kim, S. Kang, S.V. Kalinin, B.H. Park, Large resistive switching in ferroelectric BiFeO3 nano-island based switchable diodes. Adv Mater 25(100), 2339–2343 (2013). https://doi.org/10.1002/adma.201204839

    Article  Google Scholar 

  36. P. Zheng, B. Sun, Y. Chen, H. Elshekh, T. Yu, S. Mao, S. Zhu, H. Wang, Y. Zhao, Z. Yu, Photo-induced negative differential resistance in a resistive switching memory device based on BiFeO3/ZnO heterojunctions. Appl Mater Today 14, 21–28 (2019). https://doi.org/10.1016/j.apmt.2018.11.007

    Article  ADS  Google Scholar 

  37. C. Kumari, I. Varun, S. Prakash Tiwari, A. Dixit, Robust non-volatile bipolar resistive switching in sol-gel derived BiFeO3 thin films. Superlattices Microstruct 120, 67–74 (2018). https://doi.org/10.1016/j.spmi.2018.05.008

    Article  ADS  Google Scholar 

  38. B. Sun, M. Tang, J. Gao, C. Ming, Light-controlled simultaneous resistive and ferroelectricity switching effects of BiFeO3 film for a flexible multistate high-storage memory device. ChemElectroChem 3, 896–901 (2016). https://doi.org/10.1002/celc.201600002

    Article  Google Scholar 

  39. A.T. Fukuchi, H. Yamada, A. Sawa, Resistive switching memory based on ferroelectric polarization reversal at schottky-like BiFeO3 interfaces. Mater Res Soc proc. 1430, 99–104 (2012). https://doi.org/10.1557/opl.2012.933

    Article  Google Scholar 

  40. M. Vagadia, A. Ravalia, P.S. Solanki, R.J. Choudhary, D.M. Phase, D.G. Kuberkar, Improvement in resistive switching of Ba-doped BiFeO3 films. Appl Phys Lett (2013). https://doi.org/10.1063/1.4813551

    Article  Google Scholar 

  41. M. Li, F. Zhuge, X. Zhu, K. Yin, J. Wang, Y. Liu, C. He, B. Chen, R.W. Li, Nonvolatile resistive switching in Metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 21(42), 6–11 (2010). https://doi.org/10.1088/0957-4484/21/42/425202

    Article  Google Scholar 

  42. J.M. Luo, S.P. Lin, Y. Zheng, B. Wang, Nonpolar resistive switching in Mn-Doped BiFeO3 thin films by chemical solution deposition. Appl Phys Lett (2012). https://doi.org/10.1063/1.4742897

    Article  Google Scholar 

  43. Y. Shuai, S. Zhou, C. Wu, W. Zhang, D. Bürger, S. Slesazeck, T. Mikolajick, M. Helm, H. Schmidt, Control of rectifying and resistive switching behavior in BiFeO3 thin films. Appl Phys Express. (2011). https://doi.org/10.1143/APEX.4.095802

    Article  Google Scholar 

  44. Z. Lu, Z. Fan, P. Li, H. Fan, G. Tian, X. Song, Z. Li, L. Zhao, K. Huang, F. Zhang, Z. Zhang, M. Zeng, X. Gao, J. Feng, J. Wan, J. Liu, Ferroelectric resistive switching in high-density nanocapacitor arrays based on BiFeO3 ultrathin films and ordered Pt nanoelectrodes. ACS Appl Mater Interfac 8(36), 23963–23968 (2016). https://doi.org/10.1021/acsami.6b07792

    Article  Google Scholar 

  45. L. Zhang, J. Chen, J. Cao, D. He, X. Xing, Large resistive switching and switchable photovoltaic response in ferroelectric doped BiFeO3-based thin films by chemical solution deposition. J Mater Chem C 3(18), 4706–4712 (2015). https://doi.org/10.1039/c5tc00814j

    Article  Google Scholar 

  46. J. Li, Z.X. Tang, X.G. Tang, Q.X. Liu, Y.P. Jiang, Anneal temperature dependence of resistive switching and photoelectric properties of bismuth ferrite thin film prepared via sol-gel method. FlatChem 28, 100266 (2021). https://doi.org/10.1016/j.flatc.2021.100266

    Article  Google Scholar 

  47. Y. Zhao, R. Su, L. Cheng, M. Cheng, W. Cheng, H. Tong, H. Sun, J. Yan, X. Miao, Ultra-low power consumption and favorable reliability mn-doped BiFeO3 resistance-switching devices via tunable oxygen vacancy. Ceram Int (2022). https://doi.org/10.1016/j.ceramint.2022.11.066

    Article  Google Scholar 

  48. D. Li, X. Zhu, Y. Wu, J. Zhao, K. Zhang, R. Li, D. Hao, Y. Ma, R. Moro, L. Ma, La-doped BiFeO3 junction based random access multilevel nonvolatile memory. Microelectron Eng. 267–268, 111908 (2023). https://doi.org/10.1016/j.mee.2022.111908

    Article  Google Scholar 

  49. Y. Shuai, N. Du, X. Ou, W. Luo, S. Zhou, O.G. Schmidt, H. Schmidt, Improved retention of nonvolatile bipolar BiFeO3 resistive memories validated by memristance measurements. Phys Status Solidi Curr Top Solid State Phys 10(4), 636–639 (2013). https://doi.org/10.1002/pssc.201200881

    Article  ADS  Google Scholar 

  50. F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv Mater Sci Eng 2014, 578168 (2014). https://doi.org/10.1155/2014/578168

    Article  Google Scholar 

  51. C.C. Hsu, X.Z. Zhang, W.C. Jhang, C.W. Cheng, Y.M. Wu, J.E. Tsai, M. Joodaki, Write-once-read-many-times characteristics of CuO layer with Ag conductive bridges. Semicond Sci Technol (2021). https://doi.org/10.1088/1361-6641/ac115b

    Article  Google Scholar 

  52. A. Kim, K. Song, Y. Kim, J. Moon, All solution-processed, fully transparent resistive memory devices. ACS Appl Mater Interfac 3, 4525–4530 (2011)

    Article  Google Scholar 

  53. X. Li, J.G. Yang, H.P. Ma, Y.H. Liu, Z.G. Ji, W. Huang, X. Ou, D.W. Zhang, H.L. Lu, Atomic layer deposition of Ga2O3/ZnO composite films for high-performance forming-free resistive switching memory. ACS Appl Mater Interfac 12(27), 30538–30547 (2020). https://doi.org/10.1021/acsami.0c06476

    Article  Google Scholar 

  54. S. Roy, G. Niu, Q. Wang, Y. Wang, Y. Zhang, H. Wu, S. Zhai, P. Shi, S. Song, Z. Song, Z.G. Ye, C. Wenger, T. Schroeder, Y.H. Xie, X. Meng, W. Luo, W. Ren, Toward a reliable synaptic simulation using Al-doped HfO2 RRAM. ACS Appl Mater Interfac 12(9), 10648–10656 (2020). https://doi.org/10.1021/acsami.9b21530

    Article  Google Scholar 

  55. J. Wu, J. Wang, Diodelike and resistive hysteresis behavior of heterolayered BiFeO 3/ZnO ferroelectric thin films. J Appl Phys (2010). https://doi.org/10.1063/1.3500498

    Article  Google Scholar 

  56. L. Zhao, Z. Lu, F. Zhang, G. Tian, X. Song, Z. Li, K. Huang, Z. Zhang, M. Qin, S. Wu, X. Lu, M. Zeng, X. Gao, J. Dai, J.M. Liu, Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates. Sci Rep 5, 1–6 (2015). https://doi.org/10.1038/srep09680

    Article  Google Scholar 

  57. T. Yang, J. Wei, Z. Lv, Z. Xu, Z. Cheng, Ferroelectric polarization tuning the photovoltaic and diode-like effect of the Ni, Sm Co-doped BiFeO3 film capacitors. J Mater Sci Mater Electron 30(13), 12163–12169 (2019). https://doi.org/10.1007/s10854-019-01574-9

    Article  Google Scholar 

  58. Y.B. Zhu, K. Zheng, X. Wu, L.K. Ang, Enhanced stability of filament-type resistive switching by interface engineering. Sci Rep 7(1), 43664 (2017). https://doi.org/10.1038/srep43664

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ambesh Dixit acknowledges CRG, SERB, DST, Government of India, through project # CRG/2020/004023, for financial assistance of this work. Ankit acknowledges UGC-CSIR fellowship for supporting his research work. C. P. acknowledges Mr. Abhijeet J Kale, Mr. Sumit Kukreti, Ms. Surbhi Ramawat, Ms. Priyambada Sahoo, Mr. Jitendra K Yadav, Mr. Piyush Choudhary, Mr. Biswajit Pal and Ms. Bharti Rani for technical discussions for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambesh Dixit.

Ethics declarations

Conflict of interest

Authors declare no competing or conflict of interest for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, C., Yadav, A.K. & Dixit, A. Impact of crystallinity on coexistence of negative differential resistance (NDR) and write once read many (WORM) resistive switching memory in multiferroic BiFeO3 (BFO). Appl. Phys. A 129, 116 (2023). https://doi.org/10.1007/s00339-022-06372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06372-5

Keywords

Navigation