Skip to main content
Log in

Dielectric and electrical properties of 2/3Pb(Mg1/3Nb2/3)O3-1/3PbTiO3:CoFe1.97RE0.03O4 (RE = La3+ and Eu3+) composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the dielectric and electrical properties of RE3+ substituted (1-x)2/3Pb(Mg1/3Nb2/3)O3-1/3PbTiO3:xCoFe1.97RE0.03O4 (RE = La3+ and Eu3+) particulate composites (with x = 10, 15, 20, and 30 mol %) synthesized via a solid-state approach have been presented. The temperature-dependent dielectric constant \({\varepsilon }^{^{\prime}}(T)\) displays a prominent peak around 180–190 0C, which drifts towards the high-temperature side with increasing frequency, consistent with the diffuse phase transition from ferroelectric to paraelectric. The high dielectric constant (\({\varepsilon }^{^{\prime}}\)) value and additional peak at the higher temperature side are more prominent in CoFe1.97Eu0.03O4 (CFEO) than CoFe1.97La0.03O4 (CFLO) based composites because of the high conductivity of CFEO than CFLO. It is also seen that CFLO-based composite has much lower loss than CFEO-based composite owing to the lower conductivity of CFLO. The magnitude of dielectric loss (tan δ) increases with the temperature and concentration of ferrites, which might be due to the occurrence of thermally active carrier hopping conductions in low-resistive ferrites. The Jonscher’s double power law is used to analyse frequency-dependent AC conductivity. The temperature-dependent power exponents confirm that the conduction arises due to the transitional hopping of polarons. The complex impedance spectroscopy data modelled using equivalent electrical circuits show a single semicircle for both sets of composites, indicating that the conduction mechanism is only due to thermally active conducting grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

“Data will be made available on reasonable request”.

References

  1. N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, P. Rico, S. Juan, J. Phys. Cond. Matter 27, 1 (2015)

    Article  Google Scholar 

  2. F. Narita, M. Fox, Adv. Eng. Mater. 20, 1 (2018)

    Article  Google Scholar 

  3. Y. Cheng, B. Peng, Z. Hu, Z. Zhou, M. Liu, Phys. Lett. A 382, 3018 (2018)

    Article  ADS  Google Scholar 

  4. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)

    Article  Google Scholar 

  5. D.N. Astrov, Sov. Phys. JETP 13, 482 (1961)

    Google Scholar 

  6. V.J. Folen, G.T. Rado, E.W. Stalder, Phys. Rev. Lett. 6, 607 (1961)

    Article  ADS  Google Scholar 

  7. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Uspekhi 25, 415 (1982)

    Google Scholar 

  8. L.J. Zhai, H.Y. Wang, J. Magn. Magn. Mater. 426, 188 (2017)

    Article  ADS  Google Scholar 

  9. M. Ramazanoglu, M. Laver, W. Ratcliff, S.M. Watson, W.C. Chen, A. Jackson, K. Kothapalli, S. Lee, S.W. Cheong, V. Kiryukhin, Phys. Rev. Lett. 107, 1 (2011)

    Google Scholar 

  10. V. Kuldeep, O. Subohi, R. Kurchania, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Article  Google Scholar 

  11. G. Channagoudra, A.K. Saw, K. Dey, D. Xavier, R. Venkatesh, V. Subramanian, D.K. Shukla, V. Dayal, J. Alloys Compd. 863, 1 (2021)

    Article  Google Scholar 

  12. G. Channagoudra, A.K. Saw, V. Dayal, Thin Solid Films 709, 1 (2020)

    Article  Google Scholar 

  13. A.B. Swain, S.D. Kumar, V. Subramanian, P. Murugavel, Phys. Rev. Appl. 10, 1 (2020)

    Google Scholar 

  14. D. Xavier, S.D. Kumar, V. Subramanian, J. Phys. D. Appl. Phys. 55, 1 (2022)

    Article  Google Scholar 

  15. G. Channagoudra, V. Dayal, J. Alloys Compd. 928, 167181 (2022)

    Article  Google Scholar 

  16. S. Saha, R.P. Singh, Y. Liu, A.B. Swain, A. Kumar, V. Subramanian, A. Arockiarajan, G. Srinivasan, R. Ranjan, R. Ranjan, Phys. Rev. B 103, L140106 (2021)

    Article  ADS  Google Scholar 

  17. S.S. Choudhari, S.R. Wadgane, B.P. Gaikwad, S.S. Satpute, K.M. Batoo, O.M. Aldossary, S.E. Shirsath, R.H. Kadam, Ceram. Int. 47, 6496 (2021)

    Article  Google Scholar 

  18. C.M. Kanamadi, B.K. Das, C.W. Kim, D.I. Kang, H.G. Cha, E.S. Ji, A.P. Jadhav, B.E. Jun, J.H. Jeong, B.C. Choi, B.K. Chougule, Y.S. Kang, Mater. Chem. Phys. 116, 6 (2009)

    Article  Google Scholar 

  19. J.H. Peng, M. Hojamberdiev, H.Q. Li, D.L. Mao, Y.J. Zhao, P. Liu, J.P. Zhou, G.Q. Zhu, J. Magn. Magn. Mater. 378, 298 (2015)

    Article  ADS  Google Scholar 

  20. B. Noheda, D.E. Cox, G. Shirane, J. Gao, Z.G. Ye, Phys. Rev. B 66, 541041 (2002)

    Google Scholar 

  21. D.M. Ghone, V.L. Mathe, K.K. Patankar, S.D. Kaushik, J. Alloys Compd. 739, 52 (2018)

    Article  Google Scholar 

  22. K.L. Routray, D. Behera, J. Mater. Sci. Mater. Electron. 29, 14248 (2018)

    Article  Google Scholar 

  23. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133 (2011)

    Article  ADS  Google Scholar 

  24. L. Kumar, M. Kar, Ceram. Int. 38, 4771 (2012)

    Article  Google Scholar 

  25. A. Zubair, Z. Ahmad, A. Mahmood, W.C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, M.N. Ashiq, Results Phys. 7, 3203 (2017)

    Article  ADS  Google Scholar 

  26. K.K. Bamzai, G. Kour, B. Kaur, S.D. Kulkarni, J. Magn. Magn. Mater. 327, 159 (2013)

    Article  ADS  Google Scholar 

  27. G. Channagoudra, J. Peter, J. Nunez, R.L. Hadimani, V. Dayal, J. Magn. Magn. Mater. 559, 169550 (2022)

    Article  Google Scholar 

  28. M.R. Manju, K.S. Ajay, N.M. D’Souza, S. Hunagund, R.L. Hadimani, V. Dayal, J. Magn. Magn. Mater. 452, 23 (2018)

    Article  ADS  Google Scholar 

  29. Z. Yu, C. Ang, J. Appl. Phys. 91, 794 (2002)

    Article  ADS  Google Scholar 

  30. G. Channagoudra, A.K. Saw, V. Dayal, J. Phys. Chem. Solids 154, 1 (2021)

    Article  Google Scholar 

  31. A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Alloys Compd. 509, 3917 (2011)

    Article  Google Scholar 

  32. L.K. Pradhan, R. Pandey, R. Kumar, M. Kar, J. Appl. Phys. 123, 1 (2018)

    Google Scholar 

  33. M. VenkataRamana, N. Ramamanohar Reddy, B.S. Murty, V.R.K. Murthy, K.V. Siva Kumar, Adv. Condens. Matter Phys. 2010, 1 (2010)

    Article  Google Scholar 

  34. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40, 9027 (2014)

    Article  Google Scholar 

  35. N.K. Mohanty, A.K. Behera, S.K. Satpathy, B. Behera, P. Nayak, J. Rare Earths 33, 639 (2015)

    Article  Google Scholar 

  36. S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Article  Google Scholar 

  37. T. Badapanda, S.K. Rout, S. Panigrahi, T.P. Sinha, Bull. Mater. Sci. 31, 897 (2008)

    Article  Google Scholar 

  38. B. Dhanalakshmi, P. Kollu, B. Parvatheeswara Rao, P.S.V.S. Rao, Ceram. Int. 42, 2186 (2016)

    Article  Google Scholar 

  39. B. Khan, A. Kumar, P. Yadav, G. Singh, U. Kumar, A. Kumar, M.K. Singh, J. Mater. Sci. Mater. Electron. 32, 18012 (2021)

    Article  Google Scholar 

  40. R. Martinez, R. Palai, H. Huhtinen, J. Liu, J.F. Scott, R.S. Katiyar, Phys. Rev. B 82, 1 (2010)

    Google Scholar 

  41. J. Beltran-huarac, R. Martinez, G. Morell, J. Appl. Phys. 115, 1 (2014)

    Article  Google Scholar 

  42. S. Raut, P.D. Babu, R.K. Sharma, R. Pattanayak, S. Panigrahi, J. Appl. Phys. 123, 174101 (2018)

    Article  ADS  Google Scholar 

  43. T. Lakshmana Rao, M.K. Pradhan, S. Singh, S. Dash, J. Mater. Sci. Mater. Electron. 31, 4542 (2020)

    Article  Google Scholar 

  44. H.B. Sharma, K.N. Devi, V. Gupta, J.H. Lee, S.B. Singh, J. Alloys Compd. 599, 32 (2014)

    Article  Google Scholar 

  45. M.D. Rahaman, S.H. Setu, S.K. Saha, A.K.M. Akther Hossain, J. Magn. Magn. Mater. 385, 418 (2015)

    Article  ADS  Google Scholar 

  46. J.K. Mishra, K. Agrawal, S.K. Mohanty, B. Behera, Acta Phys. Pol. A 140, 415 (2021)

    Article  ADS  Google Scholar 

  47. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  48. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  49. S. Ahmed, M. Atif, M. Nadeem, Z. Ali, W. Khalid, M. Nasir Khan, Ceram Int. 46, 21090 (2020)

    Article  Google Scholar 

  50. A.S. Dzunuzovic, M.M. VijatovicPetrovic, J.D. Bobic, N.I. Ilic, M. Ivanov, R. Grigalaitis, J. Banys, B.D. Stojanovic, Ceram Int. 44, 683 (2018)

    Article  Google Scholar 

  51. A. Dhahri, E. Dhahri, E.K. Hlil, RSC Adv. 8, 9103 (2018)

    Article  ADS  Google Scholar 

  52. V. Punith Kumar, V. Dayal, R.L. Hadimani, R.N. Bhowmik, D.C. Jiles, J. Mater. Sci. 50, 3562 (2015)

    Article  ADS  Google Scholar 

  53. M. Atif, M. Nadeem, W. Khalid, Z. Ali, Mater. Res. Bull. 107, 171 (2018)

    Article  Google Scholar 

  54. R.G.M. Oliveira, M.C. Romeu, M.M. Costa, P.M.O. Silva, J.M.S. Filho, C.C.M. Junqueira, A.S.B. Sombra, J. Alloys Compd. 584, 295 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Science and Engineering Research Board (SERB) statutory body under the Department of Science and Technology (DST), Government of India, New Delhi (EMR/2016/005424) granted to VD. GC gratefully acknowledges SERB-DST for SRF. The authors are indebted to Director, UGC-DAE-CSR, Indore Centre, for the necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaylakshmi Dayal.

Ethics declarations

Conflict of interest

“The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 821 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Channagoudra, G., Bano, N., Shukla, D.K. et al. Dielectric and electrical properties of 2/3Pb(Mg1/3Nb2/3)O3-1/3PbTiO3:CoFe1.97RE0.03O4 (RE = La3+ and Eu3+) composites. Appl. Phys. A 129, 67 (2023). https://doi.org/10.1007/s00339-022-06351-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06351-w

Keywords

Navigation