Skip to main content

Advertisement

Log in

Multicolor green to orange-red emission of Tb3+ and Eu3+-codoped tellurite glasses: Eu3+ concentration and Tb3+ → Eu3+ energy transfer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of the TeO2–GeO2–ZnO glass system was single and double doped with different Tb3+/Eu3+ ratios. Their luminescent and colorimetric properties were analyzed for possible use as phosphor materials in lighting devices. The characterization by X-ray diffraction and Raman spectroscopy verified the glassy nature of the fabricated samples. The luminescent properties of the doped glasses were analyzed by means of steady-state fluorescence and time-resolved spectroscopy. The Tb3+ excitation bands observed in the codoped samples while monitoring the 700 nm emission of Eu3+, as well as the shortening of Tb3+ lifetime in presence of europium indicated a Tb3+ → Eu3+ energy transfer, which main interaction type is electric dipole–dipole, according to Inokuti–Hirayama model. The Eu3+ → Tb3+ energy transfer also occurs in the samples but with lower efficiency. The CIE1931 chromaticity coordinates, upon different excitation wavelengths, show a multicolor tunning from green to orange-red due to the lanthanide concentration ratio and the Tb3+ → Eu3+ energy transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Siva Rama Krishna Reddy, K. Swapnaa, Sk. Mahamuda, M. Venkateswarlu, A.S. Rao, G. Vijaya Prakash, Investigation on structural and luminescence features of Dy3+ ions doped alkaline-earth boro tellurite glasses for optoelectronic devices. Opt. Mater. 85, 200–210 (2018). https://doi.org/10.1016/j.optmat.2018.08.057

    Article  ADS  Google Scholar 

  2. H. Cankaya, A.T. Gorgulu, A. Kurt, A. Speghini, M. Bettinelli, A. Sennaroglu, Comparative spectroscopic investigation of Tm3+: tellurite glasses for 2-μm lasing applications. Appl. Sci. 8, 333 (2018). https://doi.org/10.3390/app8030333

    Article  Google Scholar 

  3. Y. Zhou, J. Chen, O.M. Bakr, H.T. Sun, Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 30, 6589–6613 (2018). https://doi.org/10.1021/acs.chemmater.8b02989

    Article  Google Scholar 

  4. J. Rajagukguk, J. Kaewkhao, M. Djamal, R. Hidayat, S.Y. Ruangtaweep, Structural and optical characteristics of Eu3+ ions in sodium-lead-zinc-lithium-borate glass system. J. Mol. Struct. 1121, 180–187 (2016). https://doi.org/10.1016/j.molstruc.2016.05.048

    Article  ADS  Google Scholar 

  5. R. Priyanka, S. Arunkumar, R.M. Ch Basavapoornima, K.M. Mathelane, Structural and spectroscopic investigations on Eu3+ ions doped boro-phosphate glasses for optical display applications. J. Lumin. 220, 116964 (2020). https://doi.org/10.1016/j.jlumin.2019.116964

    Article  Google Scholar 

  6. Y. Chen, G. Chen, X. Liu, J. Xu, T. Yang, C. Yuan, C. Zhou, Down-conversion luminescence and optical thermometric performance of Tb3+/Eu3+ doped phosphate glass. J. Non-Cryst. Solids 484, 111–117 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.01.027

    Article  ADS  Google Scholar 

  7. Y. Muramoto, M. Kimura, S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 29, 4 (2014). https://doi.org/10.1088/0268-1242/29/8/084004

    Article  Google Scholar 

  8. M. Kneissl, A brief review of III-nitride UV emitter technologies and their applications, in III-nitride ultraviolet emitters. ed. by M. Kneissl, J. Rass (Springer International Publishing, 2016), pp.1–7. https://doi.org/10.1007/978-3-319-24100-5_1

    Chapter  Google Scholar 

  9. O. Kıbrıslı, A.E. Ersundu, M. Çelikbilek Ersundu, Dy3+ doped tellurite glasses for solid-state lighting: An investigation through physical, thermal, structural and optical spectroscopy studies. J. Non-Cryst. Solids 513, 125–136 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.020

    Article  ADS  Google Scholar 

  10. V.A.G. Rivera, F.A. Ferri, L.A.O. Nunes, E. Marega Jr., White light generation via up-conversion and blue tone in Er3+/Tm3+/Yb3+-doped zinc-tellurite glasses. Opt. Mater. 67, 25–31 (2017). https://doi.org/10.1016/j.optmat.2017.03.028

    Article  ADS  Google Scholar 

  11. M. Sołtys, A. Górny, J. Pisarska, W.A. Pisarski, Lead borate glasses triply doped with Dy3+/Tb3+/Eu3+ ions for white emission. Opt. Mater. 82, 110–115 (2018). https://doi.org/10.1016/j.optmat.2018.05.043

    Article  ADS  Google Scholar 

  12. K. Jha, A.K. Vishwakarma, M. Jayasimhadri, D. Haranath, Multicolor and white light emitting Tb3+/Sm3+ doped zinc phosphate barium titanate glasses via energy transfer for optoelectronic device applications. J. Alloys Compd. 719, 116–124 (2017). https://doi.org/10.1016/j.jallcom.2017.05.076

    Article  Google Scholar 

  13. M. Jayasimhadri, K. Jha, B.V. Ratnam, H.J. Woo, K. Jang, A.S. Rao, D. Haranath, Single NUV band pumped PbO-GeO2-TeO2:Tb3+ yellowish green emitting glass material for tricolor white LEDs. J. Alloys Compd. 711, 395–399 (2017). https://doi.org/10.1016/j.jallcom.2017.03.252

    Article  Google Scholar 

  14. H.I. Francisco-Rodriguez, A. Lira, O. Soriano-Romero, A.N. Meza-Rocha, S. Bordignon, A. Speghinie, R. Lozada-Morales, U. Caldiño, Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications. Opt. Mater. 79, 358–365 (2018). https://doi.org/10.1016/j.optmat.2018.04.004

    Article  ADS  Google Scholar 

  15. S. Gopi, S.K. Jose, E. Sreeja, P. Manasa, N.V. Unnikrishnan, C. Joseph, P.R. Biju, Tunable green to red emission via Tb sensitized energy transfer in Tb/Eu codoped alkali fluoroborate glass. J. Lumin. 192, 1288–1294 (2017). https://doi.org/10.1016/j.jlumin.2017.09.009

    Article  Google Scholar 

  16. T.B. de Queiroz, M.B.S. Botelho, T.S. Gonçalves, R. Dousti, A.S.S. de Camargo, New fluorophosphate glasses codoped with Eu3+ and Tb3+ as candidates for generating tunable visible light. J. Alloys Compd. 647, 315–321 (2015). https://doi.org/10.1016/j.jallcom.2015.06.066

    Article  Google Scholar 

  17. S. Loos, M. Mungra, B. Ahrens, R.L. Leonard, A. Evans, J.A. Johnson, F. Steudel, S. Schweizer, Concentration-dependent luminescence and energy transfer in Tb3+/Eu3+ doped borate and fluorozirconate glasses. J. Lumin. 187, 298–303 (2017). https://doi.org/10.1016/j.jlumin.2017.03.030

    Article  Google Scholar 

  18. B. Kukliński, D. Wileńska, S. Mahlik, K. Szczodrowski, M. Grinberg, A.M. Kłonkowski, Luminescent GeO2–Pb–Bi2O3 glasses co-doped with Tb3+1 and Eu3+: excitation energy transfer and color chromaticity. Opt. Mater. 36, 633–638 (2014). https://doi.org/10.1016/j.optmat.2013.10.042

    Article  ADS  Google Scholar 

  19. D. Wileńska, K. Szczodrowski, S. Mahlik, B. Kukliński, M. Grinberg, A.M. Kłonkowski, White emitting phosphors based on glasses of the type 10AlF3–10TiO2–39PbO–30H3BO3–10SiO2–xEu2O3–(1–x)Tb2O3: an energy transfer study. J. Lumin. 166, 54–59 (2015). https://doi.org/10.1016/j.jlumin.2015.05.002

    Article  Google Scholar 

  20. F. Hu, X. Wei, S. Jiang, S. Huang, Y. Qin, Y. Chen, C.K. Duan, M. Yin, Fabrication and luminescence properties of transparent glass-ceramics containing Eu3+-Doped TbPO4 nanocrystals. J. Am. Ceram. Soc. 98, 464–468 (2015). https://doi.org/10.1111/jace.13283

    Article  Google Scholar 

  21. R. Wang, D. Zhou, J. Qiu, Y. Yang, C. Wang, Color-tunable luminescence in Eu3+/Tb3+ codoped oxyfluoride glass and transparent glass-ceramics. J. Alloys Compd. 629, 310–314 (2015). https://doi.org/10.1016/j.jallcom.2014.12.233

    Article  Google Scholar 

  22. T.V. Bocharova, A.N. Vlasova, G.O. Karapetyan, V.G. Kuryavyi, A.M. Mironov, N.O. Tagil’tseva, Local environment of Eu3+ and Tb3+ ions in fluorophosphate glasses of the Ba(PO3)2–MgCaSrBaAl2F14 system. Glass Phys. Chem. 34, 683–692 (2008). https://doi.org/10.1134/S1087659608060059

    Article  Google Scholar 

  23. K.V. Raju, S. Sailaja, C.N. Raju, B.S. Reddy, Optical characterization of Eu3+ and Tb3+ ions doped cadmium lithium alumino fluoro boro tellurite glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 87–91 (2011). https://doi.org/10.1016/j.saa.2011.02.009

    Article  ADS  Google Scholar 

  24. D.A. Rodríguez-Carvajal, A.N. Meza-Rocha, U. Caldiño, R. Lozada-Morales, E. Alvarez, Ma.E. Zayas, Reddish-orange, neutral and warm white emissions in Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses. Solid State Sci. 61, 70–76 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.09.009

    Article  ADS  Google Scholar 

  25. M.S. Sadeq, H.Y. Morshidy, Effect of mixed rare-earth ions on the structural and optical properties of some borate glasses. Ceram. Int. 45(15), 18327–18332 (2019). https://doi.org/10.1016/j.ceramint.2019.06.046

    Article  Google Scholar 

  26. R. El-Mallawany, Some physical properties of tellurite glasses, in Tellurite glass smart materials. ed. by R. El-Mallawany (Springer Nature, 2018), pp.8–13. https://doi.org/10.1007/978-3-319-76568-6_1

    Chapter  Google Scholar 

  27. G. Yankov, L. Dimowa, N. Petrova, M. Tarassov, K. Dimitrov, T. Petrov, B.L. Shivachev, Synthesis, structural and non-linear optical properties of TeO2–GeO2–Li2O glasses. Opt. Mater. 35, 248–251 (2012). https://doi.org/10.1016/j.optmat.2012.08.002

    Article  ADS  Google Scholar 

  28. A.G. Kalampounias, N.K. Nasikas, G.N. Papatheodorou, Structural investigations of the xTeO2–(1–x)GeO2 (x=0, 0.2, 0.4, 0.6, 0.8 and 1) tellurite glasses: A composition dependent Raman spectroscopic study. J. Phys. Chem. Solids 72, 1052–1056 (2011). https://doi.org/10.1016/j.jpcs.2011.05.016

    Article  ADS  Google Scholar 

  29. N. Ghribi, M. Dutreilh-Colas, J.-R. Duclère, F. Gouraud, T. Chotard, R. Karray, A. Kabadou, P. Thomas, Structural, mechanical and optical investigations in the TeO2-rich part of the TeO2-GeO2-ZnO ternary glass system. Solid State Sci. 40, 20–30 (2015). https://doi.org/10.1016/j.solidstatesciences.2014.12.009

    Article  ADS  Google Scholar 

  30. M. Lesniak, J. Zeid, B. Starzyk, M. Kochanovicz, M. Kuwik, J. Zmojda, P. Miluski, A. Baranowska, J. Dorosz, W. Pisarski, J. Pisarska, D. Dorosz, Investigation of the TeO2/GeO2 ratio on the spectroscopic properties of Eu3+-doped oxide glasses for optical fiber application. Materials 15, 117 (2022). https://doi.org/10.3390/ma15010117

    Article  ADS  Google Scholar 

  31. H.A.A. Sidek, S. Rosmawati, Z.A. Talib, M.K. Halimah, W.M. Daud, Synthesis and Optical Properties of ZnO-TeO2 Glass System. Am. J. Appl. Sci. 6, 1489–1494 (2009). https://doi.org/10.3844/ajassp.2009.1489.1494

    Article  Google Scholar 

  32. N.S. Tagiara, D. Palles, E.D. Simandiras, V. Psycharis, A. Kyritsis, E.I. Kamitsos, Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J. Non-Cryst. Solids 457, 116–125 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.11.033

    Article  ADS  Google Scholar 

  33. A. Gulenko, O. Masson, A. Berghout, D. Hamani, P. Thomas, Atomistic simulations of TeO2-based glasses: interatomic potentials and molecular dynamics. Phys. Chem. Chem. Phys. 16, 14150–14160 (2014). https://doi.org/10.1039/c4cp01273a

    Article  Google Scholar 

  34. M.E. Alvarez-Ramos, R.C. Carrillo-Torres, R. Sánchez-Zeferino, U. Caldiño, J. Alvarado-Rivera, Co-emission and energy transfer of Sm3+ and/or Eu3+ activated zinc-germanate- tellurite glass as a potential tunable orange to reddish-orange phosphor. J. Non-Cryst. Solids 521, 119462 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119462

    Article  Google Scholar 

  35. I.V. García-Amaya, Ma.E. Zayas, J. Alvarado-Rivera, M. Cortez-Valadez, M. Pérez-Tello, N. Cayetano-Castro, F. Martínez-Suárez, A. Mendoza-Córdova, Influence of Eu2O3 on phase crystallization and nanocrystals formation in tellurite glasses. J. Non-Cryst. Solids 499, 49–57 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.018

    Article  ADS  Google Scholar 

  36. G. Monteiro, L.F. Santos, J.C.G. Pereira, R.M. Almeida, Optical and spectroscopic properties of germanotellurite glasses. J. Non-Cryst. Solids 350, 2695–2701 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.12.062

    Article  ADS  Google Scholar 

  37. J. Alvarado-Rivera, D.A. Rodríguez-Carvajal, M.C. Acosta-Enriquez, M.B. Manzanares-Martínez, E. Álvarez, R. Lozada-Morales, G.C. Díaz, A. de León, Ma.E. Zayas, Effect of CeO2 on the glass structure of sodium germanate glasses. J. Am. Ceram. Soc. 97, 3494–3500 (2014). https://doi.org/10.1111/jace.13202

    Article  Google Scholar 

  38. R.C. Carrillo-Torres, G. Saavedra-Rodríguez, J. Alvarado-Rivera, U. Caldiño, R. Sánchez-Zeferino, M.E. Alvarez-Ramos, Tunable emission and energy transfer in TeO2-GeO2-ZnO and TeO2-GeO2-MgCl2 glasses activated with Eu3+/Dy3+ for solid state lighting applications. J. Lumin. 212, 116–125 (2019). https://doi.org/10.1016/j.jlumin.2019.04.008

    Article  Google Scholar 

  39. K. Binnemans, Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015). https://doi.org/10.1016/j.ccr.2015.02.015

    Article  Google Scholar 

  40. W. Stambouli, H. Elhouichet, B. Gelloz, M. Ferid, Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics. J. Lumin. 138, 201–208 (2013). https://doi.org/10.1016/j.jlumin.2013.01.019

    Article  Google Scholar 

  41. K. Maheshvaran, P.K. Veeran, K. Marimuthu, Structural and optical studies on Eu3+ doped boro-tellurite glasses. Solid State Sci. 17, 54–62 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.11.013

    Article  ADS  Google Scholar 

  42. G. Blasse, B.C. Grabmaier, Luminescent Materials, 1st edn. (Springer-Verlag, Berlin, 1994), pp.71–107

    Google Scholar 

  43. V. Lavín, U.R. Rodríguez-Mendoza, I.R. Martín, V.D. Rodríguez, Optical spectroscopy analysis of the Eu3+ ions local structure in calcium diborate glasses. J. Non-Cryst. Solids 319, 200–216 (2003). https://doi.org/10.1016/S0022-3093(02)01914-2

    Article  ADS  Google Scholar 

  44. N. Wada, K. Kojima, Glass composition dependence of Eu3+ ion red fluorescence. J. Lumin. 126, 53–62 (2007). https://doi.org/10.1016/j.jlumin.2006.05.002

    Article  Google Scholar 

  45. U. Caldiño, E. Álvarez, A. Speghini, M. Bettinelli, New greenish-yellow and yellowish-green emitting glass phosphors: Tb3+/Eu3+ and Ce3+/Tb3+/Eu3+ in zinc phosphate glasses. J. Lumin. 135, 216–220 (2013). https://doi.org/10.1016/j.jlumin.2012.10.013

    Article  Google Scholar 

  46. M.R. Dousti, R.J. Amjad, Spectroscopic properties of Tb3+-doped lead zinc phosphate glass for green solid state laser. J. Non-Cryst. Solids 420, 21–25 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.04.002

    Article  ADS  Google Scholar 

  47. A.-B.F.A. Mohammed, G. Lakshminarayana, S.O. Baki, Kh.A. Bashar, I.V. Kityk, M.A. Mahdi, Optical and dielectric studies for Tb3+/Sm3+ codoped borate glasses for solid-state lighting applications. Opt. Mater. 86, 387–393 (2018). https://doi.org/10.1016/j.optmat.2018.10.033

    Article  ADS  Google Scholar 

  48. N. Deop, A.S. Rao, Spectroscopic studies of single near ultraviolet pumped Tb3+ doped lithium lead alumino borate glasses for green lasers and tricolour w-LEDs. J. Lumin. 194, 56–63 (2018). https://doi.org/10.1016/j.jlumin.2017.09.057

    Article  Google Scholar 

  49. E. Álvarez, M.E. Zayas, J. Alvarado-Rivera, F. Félix-Domínguez, R.P. Duarte-Zamorano, U. Caldiño, New reddish-orange and greenish-yellow light emitting phosphors: Eu3+ and Tb3+/Eu3+ in sodium germanate glass. J. Lumin. 153, 198–202 (2014). https://doi.org/10.1016/j.jlumin.2014.03.031

    Article  Google Scholar 

  50. M.E. Alvarez-Ramos, J. Alvarado-Rivera, M.E. Zayas, U. Caldiño, J. Hernández-Paredes, Yellow to orange-reddish glass phosphors: Sm3+, Tb3+ and Sm3+/Tb3+ in zinc tellurite-germanate glasses. Opt. Mater. 75, 88–93 (2018). https://doi.org/10.1016/j.optmat.2017.09.033

    Article  ADS  Google Scholar 

  51. M. Inokuti, F. Hirayama, Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43, 1978–1989 (1965). https://doi.org/10.1063/1.1697063

    Article  ADS  Google Scholar 

  52. A.U. Trápala-Ramírez, J.L.N. Gálvez-Sandoval, A. Lira, I. Camarillo, M.E. Álvarez-Ramos, A.N. Meza-Rocha, U. Caldiño, Calcium-zinc phosphate glasses activated with Tb3+/Eu3+ for laser and white LED applications. J. Lumin. 215, 116621 (2019). https://doi.org/10.1016/j.jlumin.2019.116621

    Article  Google Scholar 

  53. M.E. Álvarez-Ramos, Study of the optical properties and cross relaxation process of Dy3+ under simultaneous UV-IR excitation in tellurite glasses. J. Lumin. 233, 117874 (2021). https://doi.org/10.1016/j.jlumin.2020.117874

    Article  Google Scholar 

  54. C.S. McCamy, Correlated color temperature as an explicit function chromaticity coordinates. Color. Res. Appl. 17, 142–144 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Consejo Nacional de Ciencia y Tecnología (CONACyT) for their support from project Cátedra-CONACyT 1959.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, analysis and editing were performed by JA-R, GS-R, RCC-T, FF-D and RS-Z. The first draft of the manuscript was written by MEA-R and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. E. Alvarez-Ramos.

Ethics declarations

Conflict of interest

The authors declare there is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Ramos, M.E., Alvarado-Rivera, J., Félix-Domínguez, F. et al. Multicolor green to orange-red emission of Tb3+ and Eu3+-codoped tellurite glasses: Eu3+ concentration and Tb3+ → Eu3+ energy transfer. Appl. Phys. A 129, 75 (2023). https://doi.org/10.1007/s00339-022-06347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06347-6

Keywords

Navigation