Skip to main content

A Brief Review of III-Nitride UV Emitter Technologies and Their Applications

  • Chapter
  • First Online:
III-Nitride Ultraviolet Emitters

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 227))

Abstract

This chapter provides a brief introduction to group III-nitride ultraviolet light emitting diode (LED) technologies and an overview of a number of key application areas for UV-LEDs. It covers the state of the art of UV-LEDs as well a survey of novel approaches for the development of high performance UV light emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Akasaki, H. Amano, K. Hiramatsu, N. Sawaki, High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE. in Proceedings of 14th International Symposium on Gallium Arsenide and Related Compounds 1987, pp. 633–636 (1988)

    Google Scholar 

  2. S. Nakamura, T. Mukai, M. Senoh, High-power GaN p-n junction blue-light-emitting diodes. Jpn. J. Appl. Phys. 30, L1998–L2001 (1991)

    Article  Google Scholar 

  3. S. Nakamura, M. Senoh, T. Mukai, p-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes. Jpn. J. Appl. Phys. 32, L8–L11 (1993)

    Article  Google Scholar 

  4. S. Nakamura, T. Mukai, M. Senoh, Candera-class high-brightness InGaN/AlgaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994)

    Article  Google Scholar 

  5. Press release of the The Royal Swedish Academy of Sciences. Retrieved 7 Oct 2014, www.nobelprize.org/nobel_prizes/physics/laureates/2014/press.html.

  6. "UV LED Efficiency 2015 (last update 19-July-2015)". Retrieved 6 Oct 2015, www.researchgate.net/publication/280131929

  7. T. Nishida, N. Kobayashi, T. Ban, GaN-free transparent ultraviolet light-emitting diodes. Appl. Phys. Lett. 82, 1 (2003)

    Article  Google Scholar 

  8. J. Edmond, A. Abare, M. Bergman, J. Bharathan, K.L. Bunker, D. Emerson, K. Haberern, J. Ibbetson, M. Leung, P. Russel, D. Slater, High efficiency GaN-based LEDs and lasers on SiC. J. Cryst. Growth 272, 242 (2004)

    Google Scholar 

  9. M. Kneissl, Z. Yang, M. Teepe, C. Knollenberg, N.M. Johnson, A. Usikov, V. Dmitriev, Ultraviolet InAlGaN light emitting diodes grown on hydride vapor phase epitaxy AlGaN/sapphire template. Jpn. J. Appl. Phys. 45, 3905 (2006)

    Article  Google Scholar 

  10. Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wave-length of 210 nanometres. Nature 441, 325 (2006)

    Article  Google Scholar 

  11. H. Tsuzuki, F. Mori, K. Takeda, T. Ichikawa, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Yoshida, M. Kuwabara, Y. Yamashita, H. Kan, High-performance UV emitter grown on high-crystalline quality AlGaN underlying layer. Phys. Status Solidi (a) 206, 1199 (2009)

    Google Scholar 

  12. J.P. Zhang, A. Chitnis, V. Adivarahan, S. Wu, V. Mandavilli, R. Pachipulusu, M. Shatalov, G. Simin, J.W. Yang, M.A. Kahn, Milliwatt power deep ultra-violet light-emitting diodes over sapphire with emission at 278 nm. Appl. Phys. Lett. 81, 4910 (2002)

    Article  Google Scholar 

  13. V. Adivarahan, S. Wu, J.P. Zhang, R.A. Chitnis, M. Shatalov, V. Mandavilli, R. Gaska, M.A. Khan, High-efficiency 269 nm emission deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 84, 4762 (2004)

    Article  Google Scholar 

  14. J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T.M. Katona, M.S. Shur, R. Gaska, M.A. Khan, AlGaN deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 44, 7250 (2005)

    Article  Google Scholar 

  15. H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata, 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 91, 071901 (2007)

    Article  Google Scholar 

  16. A. Khan, K. Balakrishnan, T. Katona, Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77 (2008)

    Article  Google Scholar 

  17. S. Sumiya, Y. Zhu, J. Zhang, K. Kosaka, M. Miyoshi, T. Shibata, M. Tanaka, T. Egawa, AlGaN-based deep ultraviolet light-emitting diodes, grown on epitaxial AlN/sapphire templates. Jpn. J. Appl. Phys. 47, 43 (2008)

    Article  Google Scholar 

  18. H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, N. Kamata, 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Stat. Sol. (a) 206, 1176 (2009)

    Google Scholar 

  19. H. Hirayama, Y. Tsukada, T. Maeda, N. Kamata, Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010)

    Article  Google Scholar 

  20. A. Fujioka, T. Misaki, T. Murayama, Y. Narukawa, T. Mukai, Improvement in output power of 280-nm deep ultraviolet light-emitting diode by using AlGaN multi quantum wells. Appl. Phys. Express 3, 041001 (2010)

    Article  Google Scholar 

  21. C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, H. Amano, Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl. Phys. Express 3, 061004 (2010)

    Article  Google Scholar 

  22. J.R. Grandusky, S.R. Gibb, M.C. Mendrick, C. Moe, M. Wraback, L.J. Schowalter, High output power from 260 nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance. Appl. Phys. Express 4, 082101 (2011)

    Article  Google Scholar 

  23. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N.M. Johnson, M. Weyers, Advances in group III-nitride based deep UV light emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2011)

    Article  Google Scholar 

  24. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, AlGaN Deep-ultraviolet light-emitting diodes with external quantum efficiency above 10 %. Appl. Phys. Express 5, 082101 (2012)

    Article  Google Scholar 

  25. V. Kueller, A. Knauer, C. Reich, A. Mogilatenko, M. Weyers, J. Stellmach, T. Wernicke, M. Kneissl, Z. Yang, C.L. Chua, N.M. Johnson, Modulated epitaxial lateral overgrowth of aln for efficient UV LEDs. IEEE Photonics Tech. Lett. 24, 1603 (2012)

    Article  Google Scholar 

  26. T. Kinoshita, T. Obata, T. Nagashima, H. Yanagi, B. Moody, S. Mita, S. Inoue, Y. Kumagai, A. Koukitu, Z. Sitar, Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 6, 092103 (2013)

    Article  Google Scholar 

  27. J.R. Grandusky, J. Chen, S.R. Gibb, M.C. Mendrick, C.G. Moe, L. Rodak, G.A. Garrett, M. Wraback, L.J. Schowalter, 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl. Phys. Express 6, 032101 (2013)

    Article  Google Scholar 

  28. T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, M. Kneissl, Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure. Appl. Phys. Lett. 103, 031109 (2013)

    Article  Google Scholar 

  29. P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, Z. Qin, 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett. 102, 241113 (2013)

    Article  Google Scholar 

  30. A. Fujioka, K. Asada, H. Yamada, T. Ohtsuka, T. Ogawa, T. Kosugi, D. Kishikawa, T. Mukai, High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond. Sci. Technol. 29, 084005 (2014)

    Article  Google Scholar 

  31. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, T. Wernicke, J. Rass, M. Weyers, M. Kneissl, Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 105, 051113 (2014)

    Article  Google Scholar 

  32. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, N. Kamata, Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014)

    Article  Google Scholar 

  33. Information on low and medium pressure mercury lamps. Retrieved 5 Oct 2015,  www.heraeus-noblelight.com

  34. W.L. Morison, Phototherapy and Photochemotherapy of Skin Disease, 2nd edn. (Raven Press, New York, 1991)

    Google Scholar 

  35. P.E. Hockberger, A history of ultraviolet photobiology for humans, animals and microorganisms. Photochem. Photobiol. 76(6), 561–579 (2002)

    Article  Google Scholar 

  36. M. Schreiner, J. Martínez-Abaigar, J. Glaab, M. Jansen, UVB induced secondary plant metabolites. Optik Photonik 9(2), 34–37 (2014)

    Article  Google Scholar 

  37. S. Vilhunen, H. Särkkä, M. Sillanpää, Ultraviolet light-emitting diodes in water disinfection. Environ. Sci. Pollut. Res. 16(4), 439–442 (2009)

    Article  Google Scholar 

  38. M.H. Crawford, M.A. Banas, M.P. Ross, D.S. Ruby, J.S. Nelson, R. Boucher, A.A. Allerman, Final LDRD report: ultraviolet water purification systems for rural environments and mobile applications. Sandia Report, SAND2005-7245 (2005)

    Google Scholar 

  39. M.A. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, M. Jekel, Application of GaN-based deep ultraviolet light emitting diodes—UV-LEDs—for Water disinfection. Water Res. 45(3), 1481 (2011)

    Article  Google Scholar 

  40. W. Kowalski, Ultraviolet Germicidal Irradiation Handbook (Springer-Verlag, Berlin, Heidelberg, 2009)

    Google Scholar 

  41. G.Y. Lui, D. Roser, R. Corkish, N. Ashbolt, P. Jagals, R. Stuetz, Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters. Sci. Total Environ. 493, 185 (2014)

    Google Scholar 

  42. J. Mellqvist, A. Rosen, DOAS for flue gas monitoring—temperature effects in the UV/visible absorption spectra of NO, NO2, SO2, and NH3. J. Quant. Spectrosc. Radiat. Transf. 56(2), 187–208 (1996)

    Article  Google Scholar 

  43. J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)

    Article  Google Scholar 

  44. P.J. Hargis Jr, T.J. Sobering, G.C. Tisone, J.S. Wagner, Ultraviolet fluorescence detection and identification of protein, DNA, and bacteria. Proc. SPIE 2366, 147 (1995)

    Article  Google Scholar 

  45. Z. Xu, B.M. Sadler, Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag. 67 (2008)

    Google Scholar 

  46. K.-X. Sun, B. Allard, S. Buchman, S. Williams, R.L. Byer, LED deep UV source for charge management of gravitational reference sensors. Class. Quantum Grav. 23, S141–S150 (2006)

    Article  Google Scholar 

  47. “UV-LED market to grow from $90 m to $520 m in 2019”. Retrieved 5 Oct 2015, www.semiconductor-today.com Semicond. Today 10(1), 80 (2015)

  48. F. Mehnke, Institute of Solid State Physics, TU Berlin, private communication (2014)

    Google Scholar 

  49. T. Whitaker, Rubicon technology demonstrates 12-inch sapphire wafers. www.ledsmagazine.com/articles/2011/01/rubicon-technology-demonstrates-12-inch-sapphire-wafers.html

  50. F. Brunner, H. Protzmann, M. Heuken, A. Knauer, M. Weyers, M. Kneissl, High-temperature growth of AlN in a Production Scale 11x2” MOVPE reactor. Phys. Stat. Sol. (c) 1 (2008)

    Google Scholar 

  51. O. Reentilä, F. Brunner, A. Knauer, A. Mogi-latenko, W. Neumann, H. Protzmann, M. Heuken, M. Kneissl, M. Weyers, G. Tränkle, Effect of the AlN nucleation layer growth on AlN material qual-ity. J. Cryst. Growth 310(23), 4932 (2008)

    Article  Google Scholar 

  52. V. Kueller, A. Knauer, F. Brunner, A. Mogilatenko, M. Kneissl, M. Weyers, Investigation of inversion domain formation in AlN grown on sapphire by MOVPE. Phys. Stat. Sol. (c) 9(3–4), 496–498 (2012)

    Google Scholar 

  53. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Band-edge electroabsorption in quantum Weil structures: the quantum-confined stark effect. Phys. Rev. Lett. 53(22), 2173 (1984)

    Article  Google Scholar 

  54. J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Polarization-induced hole doping in wide–band-gap uniaxial semiconductor heterostructures. Science 327, 60 (2009)

    Article  Google Scholar 

  55. Y. Liao, C. Thomidis, C. Kao, T.D. Moustakas, AlGaN based deep ultraviolet light emitting diodes with high internal quantum efficiency grown by molecular beam epitaxy. Appl. Phys. Lett. 98, 081110 (2011)

    Article  Google Scholar 

  56. S. Kurin, A. Antipov, I. Barash, A. Roenkov, A. Usikov, H. Helava, V. Ratnikov, N. Shmidt, A. Sakharov, S. Tarasov, E. Menkovich, I. Lamkin, B. Papchenko, Y. Makarov, Characterization of HVPE-grown UV LED heterostructures. Phys. Stat. Sol (c) 11(3–4), 813 (2014)

    Google Scholar 

  57. S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Origin of defect-insensitive emission probability in In-containing (Al, In, Ga)N alloy semiconductors. Nat. Mater. 5, 810–816 (2006)

    Article  Google Scholar 

  58. T. Wunderer, C.L. Chua, Z. Yang, J.E. Northrup, N.M. Johnson, G.A. Garrett1, H. Shen1, M. Wraback, Pseudomorphically grown ultraviolet C photopumped lasers on bulk AlN substrates. Appl. Phys. Express 4, 092101 (2011)

    Google Scholar 

  59. T. Wunderer, C.L. Chua, J.E. Northrup, Z. Yang, N.M. Johnson, M. Kneissl, G.A. Garrett, H. Shen, M. Wraback, B. Moody, H.S. Craft, R. Schlesser, R.F. Dalmau, Z. Sitar, Optically pumped UV lasers grown on bulk AlN substrates. Phys. Stat. Sol. (c) 9, 822 (2012)

    Google Scholar 

  60. Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007)

    Article  Google Scholar 

  61. M.-H. Kim, M.F. Schubert, Q. Dai, J.K. Kim, E. Fred Schubert, J. Piprek, Y. Park, Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007)

    Google Scholar 

  62. J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, M. Sabathil, N. Linder, S. Lutgen, On the importance of radiative and Auger losses in GaN-based quantum wells. Appl. Phys. Lett. 92, 261103 (2008)

    Article  Google Scholar 

  63. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, On the origin of IQE-‘droop’ in InGaN LEDs. Phys. Stat. Sol. (c) 6(S2), S913 (2009)

    Google Scholar 

  64. J. Cho, E. Fred Schubert, J.K. Kim, Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev. 7(3), 408–421 (2013)

    Google Scholar 

  65. J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch, Direct measurement of auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. Phys. Rev. Lett. 110, 177406 (2013)

    Article  Google Scholar 

  66. J. Yun, J.-I. Shim, H. Hirayama, Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation. Appl. Phys. Express 8, 022104 (2015)

    Article  Google Scholar 

  67. E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98, 161107 (2011)

    Article  Google Scholar 

  68. K. Ban, J. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Express 4, 052101 (2011)

    Article  Google Scholar 

  69. Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, T. Mukai, White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 43, 354002 (2010)

    Article  Google Scholar 

  70. Solid-state lighting research and development: multi-year program plan. U.S. Department of Energy, DOE/EE-1089 (2014)

    Google Scholar 

  71. S. Karpov, Y.N. Makarov, Dislocation effect on light emission in gallium nitride. Appl. Phys. Lett. 81, 4721 (2002)

    Article  Google Scholar 

  72. C. Reich, M. Feneberg, V. Kueller, A. Knauer, T. Wernicke, J. Schlegel, M. Frentrup, R. Goldhahn, M. Weyers, M. Kneissl, Excitonic recombination in epitaxial lateral overgrown AlN on sapphire. Appl. Phys. Lett. 103, 212108 (2013)

    Article  Google Scholar 

  73. V. Kueller, A. Knauer, F. Brunner, U. Zeimer, H. Rodriguez, M. Weyers, M. Kneissl, Growth of AlGaN and AlN on patterned AlN/sapphire templates. J. Cryst. Growth 315(1), 200 (2011)

    Article  Google Scholar 

  74. V. Kueller, A. Knauer, U. Zeimer, M. Kneissl, M. Weyers, Controlled coalescence of MOVPE grown AlN during lateral overgrowth. J. Cryst. Growth 368, 83 (2013)

    Article  Google Scholar 

  75. U. Zeimer, V. Kueller, A. Knauer, A. Mogilatenko, M. Weyers, M. Kneissl, High quality AlGaN grown on ELO AlN/sapphire templates. J. Cryst. Growth 377, 32 (2013)

    Article  Google Scholar 

  76. M. Martens, F. Mehnke, C. Kuhn, C. Reich, T. Wernicke, J. Rass, V. Küller, A. Knauer, C. Netzel, M. Weyers, M. Bickermann, M. Kneissl, Performance characteristics of UVC AlGaN-based lasers grown on sapphire and bulk AlN substrates. IEEE Photonics Tech. Lett. 26, 342 (2014)

    Article  Google Scholar 

  77. M. Kim, T. Fujita, S. Fukahori, T. Inazu, C. Pernot, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, T. Takeuchi, S. Kamiyama, M. Yamaguchi, Y. Honda, H. Amano, I. Akasaki, AlGaN-based deep ultraviolet light-emitting diodes fabricated on patterned sapphire substrates. Appl. Phys. Express 4, 092102 (2011)

    Article  Google Scholar 

  78. J. Rass, T. Kolbe, N. Lobo Ploch, T. Wernicke, F. Mehnke, C. Kuhn, J. Enslin, M. Guttmann, C. Reich, J. Glaab, C. Stoelmacker, M. Lapeyrade, S. Einfeldt, M. Weyers, M. Kneissl, High power UV-B LEDs with long lifetime. Proc. SPIE 9363, 93631K (2015)

    Google Scholar 

  79. K. Forghani, M. Klein, F. Lipski, S. Schwaiger, J. Hertkorn, R.A.R. Leute, F. Scholz, M. Feneberg, B. Neuschl, K. Thonke, O. Klein, U. Kaiser, R. Gutt, T. Passow, High quality AlGaN epilayers grown on sapphire using SiNx interlayers. J. Cryst. Growth 315, 216–219 (2011)

    Article  Google Scholar 

  80. C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95(8), 3851 (2004)

    Google Scholar 

  81. M.A. Reshchikova, H. Morkoç, Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005)

    Google Scholar 

  82. S.F. Chichibu, T. Onuma, K. Hazu, A. Uedono, Major impacts of point defects and impurities on the carrier recombination dynamics in AlN. Appl. Phys. Lett. 97, 201904 (2010)

    Article  Google Scholar 

  83. T.A. Henry, A. Armstrong, A.A. Allerman, M.H. Crawford, The influence of Al composition on point defect incorporation in AlGaN. Appl. Phys. Lett. 100, 043509 (2012)

    Article  Google Scholar 

  84. J. Carlos Rojo, G.A. Slack, K. Morgan, B. Raghothamachar, M. Dudley, L.J. Schowalter, Report on the growth of bulk aluminum nitride and subsequent substrate preparation. J. Cryst. Growth 231, 317 (2001)

    Google Scholar 

  85. Z.G. Herro, D. Zhuang, R. Schlesser, Z. Sitar, Growth of AlN single crystalline boules. J. Cryst. Growth 312, 2519–2521 (2010)

    Article  Google Scholar 

  86. M. Bickermann, B.M. Epelbaum, O. Filip, P. Heimann, S. Nagata, A. Winnacker, UV transparent single-crystalline bulk AlN substrates. Phys. Stat. Sol. (C) 7(1), 21 (2010)

    Google Scholar 

  87. C. Hartmann, J. Wollweber, A. Dittmar, K. Irmscher, A. Kwasniewski, F. Langhans, T. Neugut, M. Bickermann, Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn. J. Appl. Phys. 52, 08JA06 (2013)

    Google Scholar 

  88. R. Collazo, J. Xie, B.E. Gaddy, Z. Bryan, R. Kirste, M. Hoffmann, R. Dalmau, B. Moody, Y. Kumagai, T. Nagashima, Y. Kubota, T. Kinoshita, A. Koukitu, D.L. Irvine, Z. Sitar, On the origin of the 265 nm absorption band in AlN bulk crystals. Appl. Phys. Lett. 100, 191914 (2012)

    Article  Google Scholar 

  89. K. Irmscher, C. Hartmann, C. Guguschev, M. Pietsch, J. Wollweber, M. Bickermann, Identification of a tri-carbon defect and its relation to the ultraviolet absorption in aluminum nitride. J. Appl. Phys. 114, 123505 (2013)

    Article  Google Scholar 

  90. B.E. Gaddy, Z. Bryan, I. Bryan, J. Xie, R. Dalmau, B. Moody, Y. Kumagai, T. Nagashima, Y. Kubota, T. Kinoshita, A. Koukitu, R. Kirste, Z. Sitar, R. Collazo, D.L. Irving, The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN. Appl. Phys. Lett. 104, 202106 (2014)

    Article  Google Scholar 

  91. Y. Kumagai, Y. Kubota, T. Nagashima, T. Kinoshita, R. Dalmau, R. Schlesser, B. Moody, J. Xie, H. Murakami, A. Koukitu, Z. Sitar, Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl. Phys. Express 5, 055504 (2012)

    Article  Google Scholar 

  92. T. Kinoshita, K. Hironaka, T. Obata, T. Nagashima, R. Dalmau, R. Schlesser, B. Moody, J. Xie, S. Inoue, Y. Kumagai, A. Koukitu, Z. Sitar, Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 5, 122101 (2012)

    Article  Google Scholar 

  93. K.B. Nam, M.L. Nakarmi, J. Li, J.Y. Lin, H.X. Jiang, Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 83(5), 878 (2003)

    Article  Google Scholar 

  94. M.L. Nakarmi, K.H. Kim, M. Khizar, Z.Y. Fan, J.Y. Lin, H.X. Jiang, Electrical and optical properties of Mg-doped Al0.7Ga0.3N alloys. Appl. Phys. Lett. 86, 092108 (2005)

    Article  Google Scholar 

  95. X.T. Trinh, D. Nilsson, I.G. Ivanov, E. Janzén, A. Kakanakova-Georgieva, N.T. Son, Stable and metastable Si negative-U centers in AlGaN and AlN. Appl. Phys. Lett. 105, 162106 (2014)

    Google Scholar 

  96. A. Kakanakova-Georgieva, D. Nilsson, X.T. Trinh, U. Forsberg, N.T. Son, E. Janzen, The complex impact of silicon and oxygen on the n-type conductivity of high-Al-content AlGaN. Appl. Phys. Lett. 102, 132113 (2013)

    Article  Google Scholar 

  97. J.R. Grandusky, J.A. Smart, M.C. Mendrick, L.J. Schowalter, K.X. Chen, E.F. Schubert, Pseudomorphic growth of thick n-type AlxGa1-xN layers on low-defect-density bulk AlN substrates for UV LED applications. J. Cryst. Growth 311, 2864 (2009)

    Article  Google Scholar 

  98. B. Cheng, S. Choi, J.E. Northrup, Z. Yang, C. Knollenberg, M. Teepe, T. Wunderer, C.L. Chua, N.M. Johnson, Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl. Phys. Lett. 102, 231106 (2013)

    Article  Google Scholar 

  99. A.A. Allerman, M.H. Crawford, M.A. Miller, S.R. Lee, Growth and characterization of Mg-doped AlGaN–AlN short-period superlattices for deep-UV optoelectronic devices. J. Cryst. Growth 312, 756–761 (2010)

    Article  Google Scholar 

  100. J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60 (2010)

    Article  Google Scholar 

  101. R. Dahal, J. Li, S. Majety, B.N. Pantha, X.K. Cao, J.Y. Lin, H.X. Jiang, Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett. 98, 211110 (2011)

    Article  Google Scholar 

  102. R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, Z. Sitar, Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys. Stat. Sol. (c) 8(7–8), 2031 (2011)

    Google Scholar 

  103. F. Mehnke, T. Wernicke, H. Pinhel, C. Kuhn, C. Reich, V. Kueller, A. Knauer, M. Lapeyrade, M. Weyers, M. Kneissl, Highly conductive n-AlxGa1-xN layers with aluminum mole fractions above 80 %. Appl. Phys. Lett. 103, 212109 (2013)

    Article  Google Scholar 

  104. S. Ruvimov, Z. Liliental-Weber, J. Washburn, D. Qiao, S.S. Lau, P.K. Chu, Microstructure of Ti/Al ohmic contacts for n-AlGaN. Appl. Phys. Lett. 73, 2582 (1998)

    Article  Google Scholar 

  105. J.H. Wang, S.E. Mohney, S.H. Wang, U. Chowdhury, R.D. Dupuis, Vanadium-based ohmic contacts to n-type Al0.6Ga0.4N. J. Electron. Mater. 33, 418 (2004)

    Article  Google Scholar 

  106. R. France, T. Xu, P. Chen, R. Chandrasekaran, T.D. Moustakas, Vanadium-based Ohmic contacts to n-AlGaN in the entire alloy composition. Appl. Phys. Lett. 90, 062115 (2007)

    Google Scholar 

  107. M. Lapeyrade, A. Muhin, S. Einfeldt, U. Zeimer, A. Mogilatenko, M. Weyers, M. Kneissl, Electrical properties and microstructure of vanadium-based contacts on ICP plasma etched n-type AlGaN:Si and GaN:Si surfaces. Semicond. Sci. Technol. 28, 125015 (2013)

    Google Scholar 

  108. M. Lapeyrade, F. Eberspach, N. Lobo Ploch, C. Reich, M. Guttmann, T. Wernicke, F. Mehnke, S. Einfeldt, A. Knauer, M. Weyers, M. Kneissl, Current spreading study in UVC LED emitting around 235 nm. Proc. SPIE 9363, 93631P (2015)

    Google Scholar 

  109. I.E. Titkov, D.A. Sannikov, Y.-M. Park, J.K. Son, Blue light emitting diode internal and injection efficiency. AIP Adv. 2, 032117 (2012)

    Article  Google Scholar 

  110. N. Lobo-Ploch, Chip designs for high efficiency III-nitride based ultraviolet light emitting diodes with enhanced light extraction. Ph.D. Thesis (2015)

    Google Scholar 

  111. A. Khan, K. Balakrishnan, T. Katona, Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77 (2008)

    Article  Google Scholar 

  112. V. Adivarahan, A. Heidari, B. Zhang, Q. Fareed, S. Hwang, M. Islam, A. Khan, 280 nm deep ultraviolet light emitting diode lamp with an AlGaN multiple quantum well active region. Appl. Phys. Express 2, 102101 (2009)

    Article  Google Scholar 

  113. L. Zhou, J.E. Epler, M.R. Krames, W. Goetz, M. Gherasimova, Z. Ren, J. Han, M. Kneissl, N.M. Johnson, Vertical injection thin-film AlGaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 89, 241113 (2006)

    Article  Google Scholar 

  114. T.N. Oder, K.H. Kim, J.Y. Lin, H.X. Jiang, III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 84, 466 (2004)

    Article  Google Scholar 

  115. T. Gessmann, E.F. Schubert, J.W. Graff, K. Streubel, C. Karnutsch, Omnidirectional reflective contacts for light-emitting diodes. IEEE Electron Device Lett. 24(10), 683 (2003)

    Article  Google Scholar 

  116. N. Lobo, H. Rodriguez, A. Knauer, M. Hoppe, S. Einfeldt, P. Vogt, M. Weyers, M. Kneissl, Enhancement of light extraction in UV LEDs using nanopixel contact design with Al reflector. Appl. Phys. Lett. 96, 081109 (2010)

    Article  Google Scholar 

  117. K.B. Nam, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jianga, Unique optical properties of AlGaN alloys and related ultraviolet emitters. Appl. Phys. Lett. 84, 5264 (2004)

    Article  Google Scholar 

  118. J.E. Northrup, C.L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N.M. Johnson, T. Kolbe, Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells. Appl. Phys. Lett. 100, 021101 (2012)

    Article  Google Scholar 

  119. T. Kolbe, A. Knauer, C. Chua, Z. Yang, V. Kueller, S. Einfeldt, P. Vogt, N.M. Johnson, M. Weyers, M. Kneissl, Effect of temperature and strain on the optical polarization of (In)(Al)GaN ultraviolet light emitting diodes. Appl. Phys. Lett. 99, 261105 (2011)

    Article  Google Scholar 

  120. T. Kolbe, A. Knauer, J. Stellmach, C. Chua, Z. Yang, H. Rodrigues, S. Einfeldt, P. Vogt, N.M. Johnson, M. Weyers, M. Kneissl, Optical polarization of UV-A and UV-B (In)(Al)GaN multiple quantum well light emitting diodes. Proc. SPIE 7939, 79391G (2011)

    Article  Google Scholar 

  121. T. Kolbe, A. Knauer, C. Chua, Z. Yang, H. Rodrigues, S. Einfeldt, P. Vogt, N.M. Johnson, M. Weyers, M. Kneissl, Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 97, 171105 (2010)

    Article  Google Scholar 

  122. J.J. Wierer, I. Montano, M.H. Crawford, A.A. Allerman, Effect of thickness and carrier density on the optical polarization of Al0.44Ga0.56N/Al0.55Ga0.45N quantum well layers. J. Appl. Phys. 115, 174501 (2014)

    Google Scholar 

  123. J.J. Wierer Jr, A.A. Allerman, I. Montano, M.W. Moseley, Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes. Appl. Phys. Lett. 105, 061106 (2014)

    Article  Google Scholar 

  124. H.-Y. Ryu, I.-G. Choi, H.-S. Choi, J.-I. Shim, Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Express 6, 062101 (2013)

    Article  Google Scholar 

  125. N. Lobo Ploch, H. Rodriguez, C. Stölmacker, M. Hoppe, M. Lapeyrade, J. Stellmach, F. Mehnke, T. Wernicke, A. Knauer, V. Kueller, M. Weyers, S. Einfeldt, M. Kneissl, Effective thermal management in ultraviolet light emitting diodes with micro-LED arrays. IEEE Trans. Electron Devices 60(2), 782–786 (2013)

    Google Scholar 

  126. N. Lobo Ploch, S. Einfeldt, T. Kolbe, A. Knauer, M. Frentrup, V. Kueller, M. Weyers, M. Kneissl, Investigation of the temperature dependent efficiency droop in UV LEDs. Semicond. Sci. Technol. 28, 125021 (2013)

    Google Scholar 

  127. M. Shatalov, W. Sun, R. Jain, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, G.A. Garrett, L.E. Rodak, M. Wraback, M. Shur, R. Gaska, High power AlGaN ultraviolet light emitters. Semicond. Sci. Technol. 29, 084007 (2014)

    Google Scholar 

  128. P. Scheidt, Thermal management of LED technology in applications. LED Prof. Rev. 19 (2007), Retrieved 7 Oct 2014, www.led-professional.com.

  129. R. Huber, Thermal management in high power LED systems. LED Prof. Rev. 22 (2007), Retrieved 7 Oct 2014, www.led-professional.com.

  130. J. Glaab, C. Ploch, R. Kelz, C. Stölmacker, M. Lapeyrade, N. Lobo Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl, Temperature induced degradation of InAlGaN multiple-quantum well UV-B LEDs. MRS Proc. 1792, mrss15-2102646 (2015)

    Google Scholar 

  131. J. Glaab, C. Ploch, R. Kelz, C. Stoelmacker, M. Lapeyrade, N. Lobo Ploch, J. Rass, T. Kolbe, S. Einfeldt, F. Mehnke, C. Kuhn, T. Wernicke, M. Weyers, M. Kneissl, Degradation of (InAlGa)N-based UV-B LEDs stressed by current and temperature. J. Appl. Phys. 118(9), 094504 (2015)

    Google Scholar 

  132. C.G. Moe, J.R. Grandusky, J. Chen, K. Kitamura, M.C. Mendrick, M. Jamil, M. Toita, S.R. Gibb, L.J. Schowalter, High-power pseudomorphic mid-ultraviolet light-emitting diodes with improved efficiency and lifetime. Proc. SPIE 8986, 89861V (2014)

    Google Scholar 

  133. M. Meneghini, M. Pavesi, N. Trivellin, R. Gaska, E. Zanoni, G. Meneghesso, Reliability of deep-UV light-emitting diodes. IEEE Trans. Device Mater. Reliab. 8(2), 248 (2008)

    Article  Google Scholar 

  134. M. Meneghini, D. Barbisan, L. Rodighiero, G. Meneghesso, E. Zanoni, Analysis of the physical processes responsible for the degradation of deep-ultraviolet light emitting diodes. Appl. Phys. Lett. 97, 143506 (2010)

    Article  Google Scholar 

  135. H. Amano, I. Akasaki, GaN blue and ultraviolet light emitting devices. Solid State Phys. 25, 399 (1990)

    Google Scholar 

  136. A. Chitnis, A. Kumar, M. Shatalov, V. Adivarahan, A. Lunev, J.W. Yang, G. Simin, M.A. Khan, R. Gaska, M. Shur, High-quality p-n junctions with quaternary AlInGaN/InGaN quantum wells. Appl. Phys. Lett. 77, 3880–3882 (2000)

    Article  Google Scholar 

  137. V. Adivarahan, S. Wu, A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, J.P. Zhang, M. Asif Khan, G. Tamulaitis, I. Yilmaz, M.S. Shur, R. Gaska, AlGaN single-quantum-well light-emitting diodes with emission at 285 nm. Appl. Phys. Lett. 81(19), 3666 (2002)

    Article  Google Scholar 

  138. A. Chitnis, J.P. Zhang, V. Adivarahan, W. Shuai, J. Sun, M. Shatalov, J.W. Yang, G. Simin, M. Asif Khan, 324 nm light emitting diodes with milliwatt powers. Jpn. J. Appl. Phys. 41(Part 2), 4B, L450 (2002)

    Google Scholar 

Download references

Acknowledgment

This review would not have been possible without the commitment of numerous Ph.D. students, postdoctoral researchers, colleagues, and collaborators over many years resulting in a large number of joint publications, many of which are also referenced in this book chapter. Without emphasizing anyone in particular I would like to thank all of these individuals for their contributions. I also like to acknowledge the financial support by a number of funding agencies, starting with the DARPA “SUVOS” program that ran in the United States between 2002 and 2006. Since my return to Germany I gratefully acknowledge support by the German Research Foundation (DFG) within the Collaborative Research Center “Semiconductor Nanophotonics” (CRC 787) as well as funding by the Federal Ministry of Education and Research (BMBF) of Germany within the “Deep UV-LED” and “UltraSens” projects, the regional growth core “WideBaSe”, and the consortium “Advanced UV for Life” within the “Twenty20 – Partnership for Innovation” initiative. Finally, I would like to take this opportunity to thank my family, in particular my wife Rebecca, for her encouragement, continued support, and patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kneissl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kneissl, M. (2016). A Brief Review of III-Nitride UV Emitter Technologies and Their Applications. In: Kneissl, M., Rass, J. (eds) III-Nitride Ultraviolet Emitters. Springer Series in Materials Science, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-24100-5_1

Download citation

Publish with us

Policies and ethics