Skip to main content
Log in

Threshold switching behavior generated by the in situ filaments formation in carbon matrix enriched by ultra-small zirconium oxide nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic/inorganic nanocomposites based on pyrogallol–formaldehyde xerogel, enriched by ultra-small zirconium oxide nanopowder (PF/ZrO2), were elaborated by a sol–gel method followed by thermal treatment at different temperatures. The XRD data confirm the incorporation of ZrO2 nanoparticles into the PF carbon matrix. The prepared samples have an amorphous and disordered structure for low pyrolysis temperatures. These structures remain amorphous even at high temperatures. The XRD result manifests also that the zirconium oxide (ZrO2) particles have a nanosize in the range of 3 nm. This particle size was confirmed also by transmission electronic microscopy (TEM). The TEM image of the nanocomposite PF/ZrO2 treated at 600 °C shows well the incorporation of the ZrO2 nanoparticles in the PF matrix. Most zirconium nanoparticles are well dispersed in the prepared carbon matrix. In addition, the scanning electronic microscopy (SEM) images prove the porous nature of the nanocomposites. FTIR spectrums show the existence of C = C and C–OH bond vibrations which are related to the sp2 hybridization state that affects the electronic properties of such material. Further, the samples prepared at different pyrolysis temperatures present a percolation effect, where the behavior of our nanocomposite is changed from insulator for the low temperature to semiconductor and then to metallic for a high pyrolysis temperature. The I–V characteristic of the sample prepared at 600 °C shows nonlinear conduct with an interesting hysteresis depending on synthesis and measurement parameters. The origin of the obtained conduct is explained in terms of the Joule heating effect and the filament formation phenomenon. These behaviors are promising for threshold-switching elements which can be used as selector elements in crossbar memory arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article. The data can be opened by Origin software.

References

  1. N.P.L.P. Quynh, T.U.D. Thi, K.M. Tran, H.N. Vu, H.K.T. Ta, C.V. Tran, T.B. Phan, N.K. Pham, Improving memory performance of PVA:ZnO nanocomposite: the experimental and theoretical approaches. Appl. Surf. Sci. 537, 148000–148009 (2021)

    Article  Google Scholar 

  2. W. Djeridi, N. Ben Mansour, A. Ouederni, P.L. Llewellyn, L. El Mir, Study of methane and carbon dioxide adsorption capacity by synthetic nanoporous carbon-based on pyrogallol-formaldehyde. Int. J Hydrog Energy. 42, 8905–8913 (2017)

    Article  Google Scholar 

  3. J. Li, M. Xin, Z. Ma, Y. Shi, L. Pan, Nanomaterials and their applications on bio-inspired wearable electronics. Nanotechnology 32, 472002–472029 (2021)

    Article  ADS  Google Scholar 

  4. F.J. Maldonado-Hodar, C. Moreno-castilla, A.F. Perez-Dadenas, Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives. Micropor. Mesopor. Mat. 69, 119–125 (2004)

    Article  Google Scholar 

  5. J. El Ghoul, M. Kraini, O.M. Lemine, L. El Mir, Sol–gel synthesis, structural, optical and magnetic properties of Co-doped ZnO nanoparticles. J. Mater. Sci: Mater Electron. 26, 2614–2621 (2015)

    Google Scholar 

  6. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010)

    Article  Google Scholar 

  7. X. Qi, Q. Chen, Z. Chang, Y. Deng, Breaking pore size limit of metal-organic frameworks: bio-etched ZIF-8 for lactase immobilization and delivery in vivo. Nano Res. 15, 5646–5652 (2022)

    Article  ADS  Google Scholar 

  8. I. Najeh, L. El Mir, The effects of the applied current and the measurement temperature on the negative differential resistance behavior of carbonized xerogel. Chem. Phys. 524, 85–91 (2019)

    Article  Google Scholar 

  9. D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B. 78, 035308–035315 (2008)

    Article  ADS  Google Scholar 

  10. L. El Mir, Z.B. Ayadi, M. Saadoun, J. von Bardeleben, K. Djessas, A. Zeinert, Optical, electrical, and magnetic properties of transparent, n-type conductive Zn0.90−xV0.10Alx O thin films elaborated from aerogel nanoparticles. Physica Status Solidi (a). 204, 3266–3277 (2007)

    Article  ADS  Google Scholar 

  11. I. Najeh, H. Dahman, N. Ben Mansour, M. Hjiri, L. El Mir, Electrical investigations dielectric and sensing properties of nanoporous carbon. Sens Lett. 14, 191–197 (2016)

    Article  Google Scholar 

  12. N. Ben Mansour, W. Djeridi, L. El Mir, Synthesis and characterization of porous carbon/nickel oxide nanocomposites for gas storage and negatronic devices. J. Inorg. Organomet Polym. Mater. 29, 192–202 (2019)

    Article  Google Scholar 

  13. S. Gouadria, I. Najeh, L. El Mir, Carbon-silica nanocomposite with negative differential resistance for high voltage negatronic devices: Effect of silica concentration. J. Phys. Chem. Solids 110, 290–296 (2017)

    Article  ADS  Google Scholar 

  14. Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, Akhavan O, Zarrintaj P, Hejna A, Saeb MR, Zarrabi A, Sharifi E, Yousefiasl S, Zare EN. 2022 Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering. Bioengineering Translational Medicine. e10347.

  15. S. Peng, X. Zhou, S. Tunmee, Z. Li, P. Kidkhunthod, M. Peng, W. Wang, H. Saitoh, F. Zhang, Y. Tang, Amorphous carbon nano-interface-modified aluminum anodes for high-performance dual-ion batteries. ACS Sustain Chem Eng 9, 3710–3717 (2021)

    Article  Google Scholar 

  16. M. Chhowalla, A.C. Ferrari, J. Robertson, G.A.J. Amaratunga, Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl. Phys. Lett. 76, 1419–1421 (2000)

    Article  ADS  Google Scholar 

  17. O. Akhavan, E. Ghaderi, Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C. 113, 20214–20220 (2009)

    Article  Google Scholar 

  18. J.C. Giuntini, D. Jullien, J.V. Zanchetta, F. Carmona, P. Delhaes, Electrical conductivity of low-temperature carbons as a function of frequency. J. Non-Cryst. Solids 30, 87–98 (1978)

    Article  ADS  Google Scholar 

  19. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R. 37, 129–281 (2002)

    Article  Google Scholar 

  20. J. Li, S.J. Kim, S. Han, H. Chae, Characterization of sp2/sp3 hybridization ratios of hydrogenated amorphous carbon films deposited in C2H2 inductively coupled plasma. Surf. Coat. Technol. 422, 127514–127520 (2021)

    Article  Google Scholar 

  21. B. Sun, S. Ranjan, G. Zhou, T. Guo, Y. Xia, L. Wei, Y.N. Zhou, Y.A. Wu, Multistate resistive switching behaviors for neuromorphic computing in memristor. Mater Today Advan 9, 100125–100132 (2021)

    Article  Google Scholar 

  22. N. Dey, N. Kumari, S. Bhattacharya, FRET-based ‘ratiometric’ molecular switch for multiple ions with efficacy towards real-time sampling and logic gate applications. Tetrahedron 85, 132007–132016 (2021)

    Article  Google Scholar 

  23. Q. Wang, H. Teng, Y. Zou, Z. Zhang, D. Li, R. Wang, C. Gao, J. Lin, L. Guo, Z. Wei, Graphene on SiC as a Q-switcher for a 2 μm laser. Opt. Lett. 37, 395–397 (2012)

    Article  ADS  Google Scholar 

  24. C. Chen, S. Lee, V.V. Deshpande, G.H. Lee, M. Lekas, K. Shepard, J. Hone, Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923–927 (2013)

    Article  ADS  Google Scholar 

  25. W. Fu, L. Feng, D. Mayer, G. Panaitov, D. Kireev, A. Offenhäusser, H.J. Krause, Electrolyte-gated graphene ambipolar frequency multipliers for biochemical sensing. Nano Lett. 16, 2295–2300 (2016)

    Article  ADS  Google Scholar 

  26. S. Bidmeshkipour, O. Akhavan, Graphene nanopores in broadband wide-angle optical cavity resonance absorbers. Surf. Interfaces 30, 101956 (2022)

    Article  Google Scholar 

  27. V. Ulansky, A. Raza, H. Oun, Electronic circuit with controllable negative differential resistance and its applications. Electronics 8, 409–428 (2019)

    Article  Google Scholar 

  28. N. Ben Mansour, L. El Mir, Study of carbon/copper nanocomposite synthesized by sol–gel method. J. Mater. Sci: Mater. Electron 27, 11682–11690 (2016)

    Google Scholar 

  29. R. Rahighi, O. Akhavan, A.S. Zeraati, S.M. Sattari-Esfahlan, All-carbon negative differential resistance nanodevice using a single flake of nanoporous graphene, acs applied electronic materials. ACS Appl. Electron. Mater. 3, 3418–3427 (2021)

    Article  Google Scholar 

  30. S. Gouadria, H. Dahman, K. Omri, L. El Mir, Negative differential resistance in carbon–silica nanocomposites. Int. J. Nanotechnol. 10, 597–606 (2013)

    Article  ADS  Google Scholar 

  31. M.A. Kuroda, J.P. Leburton, Joule heating induced negative differential resistance in freestanding metallic carbon nanotubes. Appl. Phys. Lett. 89, 103102–103104 (2006)

    Article  ADS  Google Scholar 

  32. Y. Sun, Nanocomposite hydroxide for resistive switching memory devices and the effect of adsorbed small molecule hexazinone. Mater. Sci. Eng. B 268, 115140–115148 (2021)

    Article  Google Scholar 

  33. S. Rehman, H. Kim, M.F. Khan, J.H. Hur, J. Eom, D.K. Kim, Tunable resistive switching of vertical ReSe2/graphene hetero-structure enabled by Schottky barrier height and DUV light. J. Alloys Compd. 855, 157310–157317 (2021)

    Article  Google Scholar 

  34. J.J.L. Hmar, Non-volatile resistive switching memory device based on ZnO-graphene oxide embedded in a polymer matrix fabricated on a flexible PET substrate. Microelectron. Eng. 233, 111436–111444 (2020)

    Article  Google Scholar 

  35. A. Puangjan, S. Chaiyasith, An efficient ZrO2/Co3O4/reduced graphene oxide nanocomposite electrochemical sensor for simultaneous determination of gallic acid, caffeic acid and protocatechuic acid natural antioxidants. Electrochim. Acta 211, 273–288 (2016)

    Article  Google Scholar 

  36. Y. Shan, L. Gao, Synthesis and characterization of phase controllable ZrO2–carbon nanotube nanocomposites. Nanotechnology 16, 625–630 (2005)

    Article  ADS  Google Scholar 

  37. F. Vahedi Gerdeh, A. Feizbakhsh, E. Konoz, H. Faraji, ZrO2, and MnS2-ZrO2 nanocomposites with decorating multi-walled carbon nanotubes (MWCNTs) for high-performance photocatalysis: preparation and optimisation. J. Environ. Anal. Chem. 102, 391–405 (2022)

    Article  Google Scholar 

  38. A.B. Migdadi, A.A. Ahmad, A.M. Alsaad, A. Telfah, Synthesis, optoelectronic and thermal characterization of PMMA-MWCNTs nanocomposite thin films incorporated by ZrO2 NPs. J. Mater. Sci. Mater. 33, 5087–5104 (2022)

    Article  Google Scholar 

  39. L. El Mir, A. Amlouk, C. Barthou, Visible luminescence of Al2O3 nanoparticles embedded in silica glass host matrix. J. Phys. Chem. Solids 67, 2395–2399 (2006)

    Article  ADS  Google Scholar 

  40. S. Amara, I. Ben Slama, I. Mrad, N. Rihane, M. Jeljeli, L. El Mir, K. Ben Rhouma, W. Rachidi, M. Sève, H. Abdelmelek, Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats, M Sakly. Nanotoxicology 8, 208–215 (2014)

    Article  Google Scholar 

  41. K. Omri, A. Alyamani, L. El Mir, Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays. Appl. Phys. A: Mater. Sci. & Process. 124, 215–221 (2018)

    Article  ADS  Google Scholar 

  42. S. Anandhi, M.L. Edward, V. Jaisankar, Synthesis, characterization and antimicrobial activity of polyindole/ZrO2 nanocomposites. Mater Today Proceed 40, 93–101 (2021)

    Article  Google Scholar 

  43. A. Elmouwahidi, E. Bailon-García, A.F. Pérez-Cadenas, F.J. Maldonado-Hodar, J. Castelo-Quibén, F. Carrasco-Marín, Electrochemical performances of supercapacitors from carbon-ZrO2 composites. Electrochim. Acta 295, 803–814 (2018)

    Article  Google Scholar 

  44. Q. Feng, X.H. Ma, Q.Z. Yan, C.C. Ge, Preparation of soft-agglomerated nano-sized ceramic powders by sol–gel combustion process. MSEB 162, 53–58 (2009)

    Article  Google Scholar 

  45. S.M. Yakout, H.S. Hassan, Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions. Molecules 19, 9160–9172 (2014)

    Article  Google Scholar 

  46. X. Zhao, M. Zhang, X. Sun, X. Li, J. Li, Comprehensive understanding of the formation process on monodisperse resorcinol-formaldehyde polymer and carbon spheres and their use as substrates for surface-enhanced Raman spectroscopy. Appl. Surf. Sci. 506, 144591–144602 (2020)

    Article  Google Scholar 

  47. N. Ben Mansour, I. Najeh, S. Mansouri, L. El Mir, Effect of pyrolysis temperature on the properties of carbon/nickel nanocomposites prepared by sol-gel method. Appl. Surf. Sci. 337, 158–165 (2015)

    Article  ADS  Google Scholar 

  48. T.N. Rao, I. Hussain, J.E. Lee, A. Kumar, B.H. Koo, Enhanced thermal properties of zirconia nanoparticles and chitosan-based intumescent flame retardant coatings. Appl. Sci. 9, 3464–3479 (2019)

    Article  Google Scholar 

  49. D. Chen, H. Sun, Y. Wang, H. Quan, Z. Ruan, Z. Ren, X. Luo, UiO-66 derived zirconia/porous carbon nanocomposites for efficient removal of carbamazepine and adsorption mechanism. Appl. Surf. Sci. 507, 145054–145063 (2020)

    Article  Google Scholar 

  50. L. El Mir, S. Kraiem, M. Bengagi, E. Elaloui, A. Ouderni, Synthesis and characterization of electrical conducting nanoporous carbon structures. Phys. B. 395, 104–110 (2007)

    Article  ADS  Google Scholar 

  51. N. Ben Mansour, L. El Mir, Effect of metal oxide nanoparticles XO (X=Ni, Cu, Mn) on the physical properties of hybrid organic/inorganic nanocomposites. J. Phys. Chem. Solid. 127, 1–10 (2019)

    Article  ADS  Google Scholar 

  52. I. Najeh, N. Ben Mansour, M. Mbarki, A. Houas, J. Ph Nogier, L. El Mir, Synthesis and characterization of electrical conducting porous carbon structures based on resorcinol–formaldehyde. Solid State Sci. 11, 1747–1751 (2008)

    Article  ADS  Google Scholar 

  53. N. Ben Mansour, L. El Mir, Origin of dc and ac electric transport phenomena in carbon/manganese oxide nanocomposite. Solid State Sci. 85, 38–47 (2018)

    Article  ADS  Google Scholar 

  54. J.M. Goodwill, G. Ramer, D. Li, B.D. Hoskins, G. Pavlidis, J.J. McClelland, A. Centrone, J.A. Bain, M. Skowronski, Spontaneous current constriction in threshold switching devices. Nat. Commun. 10, 1628–1636 (2019)

    Article  ADS  Google Scholar 

  55. S. Rathi, I. Lee, M. Kang, D. Lim, Y. Lee, S. Yamacli, H.I. Joh, S. Kim, S.W. Kim, S.J. Yun, S. Choi, G.H. Kim, Observation of negative differential resistance in mesoscopic graphene oxide devices. Sci. Rep. 8, 1–9 (2018)

    Article  Google Scholar 

  56. Q. Zhang, S. Chen, S. Zhang, W. Shang, L. Liu, M. Wang, H. Yu, L. Deng, G. Qi, L. Wang, S. Han, B. Hu, Q. Kang, Y. Liu, M. Yi, Y. Ma, W. Yang, J. Feng, X. Liu, H. Sun, W. Huang, Negative differential resistance and hysteresis in graphene-based organic light-emitting devices. J. Mater. Chem. C 6, 1926–1932 (2018)

    Article  Google Scholar 

  57. D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 51, 3289–3039 (1980)

    Article  ADS  Google Scholar 

  58. N. Bogoslovskiy, K. Tsendin, Dynamics of the current filament formation and its steady-state characteristics in chalcogenide based PCM. Solid-State Electron 129, 10–15 (2017)

    Article  ADS  Google Scholar 

  59. J.W. Mintmire, B.I. Dunlap, C.T. White, Are Fullerene Tubules Metallic? Phys. Rev. Lett. 68, 631–634 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Tunisian Ministry of Higher Education and Scientific Research through the budget of the Tunisian Laboratories.

Author information

Authors and Affiliations

Authors

Contributions

All the authors conceived the study design. WA and HJ contributed to the conceptualization, methodology, synthesis, and original draft preparation of the paper. LC and HD contributed to data analysis, conceptualization, and structural characterizations. HLG and LEM performed the supervision, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to L. El Mir.

Ethics declarations

Conflict of interest

The authors declare the absence of all known competing financial interests or personal relationships which could influence this work.

Ethical approval

All procedures performed in the studies comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, W., Jeidi, H., Chouiref, L. et al. Threshold switching behavior generated by the in situ filaments formation in carbon matrix enriched by ultra-small zirconium oxide nanoparticles. Appl. Phys. A 129, 60 (2023). https://doi.org/10.1007/s00339-022-06342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06342-x

Keywords

Navigation