Skip to main content
Log in

Recoverable strain studies of gadolinium-doped multiferroic BiFeO3 by ultrasonic velocity measurements

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Single-phase multiferroic bismuth ferrite samples doped with gadolinium with compositional formulae Bi1–xGdxFeO3 (x = 0, 0.05, 0.10, 0.15, & 0.20) have been prepared by the modified solid-state reaction technique. The well-known pulse transmission method was used to measure ultrasonic velocities at four different frequencies. The elastic moduli were calculated using the velocity values at four different frequencies. The elastic moduli were also corrected to their zero porosity using Hasselman and Fulrath model. The observed variation of elastic moduli with varying concentration of Gd and at different frequencies has been explained. Finally, as these materials are having the shape memory applications, their recoverable strain values were also calculated and the results are compared with those available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. N.A. Hill, J. Phys. chem. B 104, 6694 (2000)

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  ADS  Google Scholar 

  3. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982)

    Article  ADS  Google Scholar 

  4. M.I. Danilkevitch, I.I. Makoed, Phys. Status Solidi. 222, 541 (2000)

    Article  Google Scholar 

  5. J.R. Teague, R. Gerson, W.J. James, Sol. St. Commun. 8, 1073 (1970)

    Article  ADS  Google Scholar 

  6. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C13, 1931 (1980)

    ADS  Google Scholar 

  7. I. Sosnowska, T. Peterlin-Neumeier, E. Steichele, J. Phys. C15, 4835 (1982)

    ADS  Google Scholar 

  8. N. Min Zhong, E. Pavan Kumar, Z.J. Sagar, P. Hu Yemin, V. Reddy, Mat. Chem. Phy. 173, 126 (2016)

    Article  Google Scholar 

  9. S. Pragya Pandit, P..K..G. Satapathy, Phys. B 406, 2669 (2011)

    Article  ADS  Google Scholar 

  10. Z.V. Gabbasova, M.D. Kuz’min, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, I.B. Krynetsky, Phys. Lett. A 158, 491 (1991)

    Article  ADS  Google Scholar 

  11. Du. Yi, Z.X. Cheng, M. Shahbazi, E.W. Collings, S.X. Dou, X.L. Wang, J Alloys Comp. 490, 637 (2010)

    Article  Google Scholar 

  12. G. Lalitha, D. Das, D. Bahadur, P. Venugopal Reddy, J. Alloys Comp. 464, 6 (2008)

    Article  Google Scholar 

  13. Z. Xing, X. Zhu, J. Zhu, Z. Liu, T. Al-Kassab, J. Am. Ceram. Soc. 97, 2323 (2014)

    Article  Google Scholar 

  14. Z. Jian, N. Pavan, K.H. Min, Z.P. Venugopal, Y. Reddy, J. Supercond. Nov. Magn. 28, 2627 (2015)

    Article  Google Scholar 

  15. S. Rani, S. Sanghi, A. Agarwal, R. Kumar, O. Singh, Appl. Phys. A 128, 576 (2022)

    Article  ADS  Google Scholar 

  16. K. Bhattacharya, R.V. Kohn, J. Phys. IV France 05, C8-261 (1995)

    Article  Google Scholar 

  17. Y.V. Ramana, P. Venugopal Reddy, Acoust. Lett. 13, 83 (1989)

    Google Scholar 

  18. K. Elle Sagar, V. Kumar, P. Venugopal Reddy, Phase Transit. 94, 317 (2021)

    Article  Google Scholar 

  19. P. Elle Sagar, Venugopal Reddy, Appl. Phys. A 128, 417 (2022)

    Article  ADS  Google Scholar 

  20. K. Elle Sagar, V. Kumar, P. Venugopal Reddy, Phys. Stat. Solidi B 258, 2100022 (2021)

    Article  Google Scholar 

  21. J.J.U. Buch, G. Lalitha, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, P.V. Reddy, K. Ravi, K.B. Modi, J. Phys. D Appl. Phys. 41, 025406 (2008)

    Article  Google Scholar 

  22. G. Lalitha, P. Venugopal Reddy, J. Mag. Mag Mat. 320, 152 (2008)

    Article  Google Scholar 

  23. G. Lalitha, P. Venugopal Reddy, J. Phys.: Condens. Mat. 21, 056003 (2009)

    ADS  Google Scholar 

  24. D.P.H. Hasselman, R.M. Fulrath, J. Am. Ceram. Soc. 47, 52 (1964)

    Article  Google Scholar 

  25. M. Kim, S. Jang, S. Choi, J. Yang, J. Kim, D. Choi, Micromachines 12, 1107 (2021)

    Article  Google Scholar 

  26. A. Sato, E. Chishima, K. Soma, T. Mori, Acta Metall. 30, 1177 (1982)

    Article  Google Scholar 

  27. T. Masuya, N. Yoneyama, S. Kumai, A. Sato, Mater. Sci. Forum 327–328, 267 (2000)

    Article  Google Scholar 

  28. J. Zhang, X. Ke, G. Gou, J. Seidel, PuYu. Bin Xiang, W.-I. Liang, A.M. Minor, Y.-H. Chu, G. Van Tendeloo, X. Ren, R. Ramesh, Nat. Comm. 4, 2768 (2013)

    Article  ADS  Google Scholar 

  29. Z. Ding, J. Zhu, X. Zhang, D. Liu, Q. Qi, Y. Zhang, D. Cong, J. Phys. D: Appl. Phys. 50, 095303 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank DRDO (Defense Research Development Organization), Govt. of India for funding this work underproject No. ERIP/ER/1204665/M/01/1459.

Funding

The authors thank DRDO (Defense Research Development Organization), Govt. of India for funding this work under project No. ERIP/ER/1204665/M/01/1459.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ES, and PVR. The first draft of the manuscript was written by ES and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Paduru Venugopal Reddy.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1082 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, E., Reddy, P.V. Recoverable strain studies of gadolinium-doped multiferroic BiFeO3 by ultrasonic velocity measurements. Appl. Phys. A 129, 45 (2023). https://doi.org/10.1007/s00339-022-06331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06331-0

Keywords

Navigation