Skip to main content
Log in

The relationship between annealing and nitrogen flow ratios during magnetron sputtering of AlN films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we focus on the morphology, internal stress and defect changes of aluminum nitride (AlN) films at the different nitrogen (N2) flow ratio during high-temperature annealing, and makes a theoretical explanation. When the N2 flow ratio is 70%, the AlN films have the most stable properties and the best quality. According to Raman analysis, the internal stress of the annealed AlN films is reduced. In combination with atomic force microscopy (AFM) and scanning electron microscopy (SEM) tests, the heat-treated AlN films show voids and undergo grain rearrangement, which provides evidence for high-temperature annealing to reduce film defects and dislocations. The ultraviolet (UV) transmission spectroscopy results show that the annealing improves the optical properties of AlN films by increasing the transmittance and band gap. This work enriches the basic mechanism of heat treatment morphology change and explores the relationship between N2 parameters and annealing, which is of important significance for obtaining high quality AlN films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. L. Zhang, R. Takei, J. Lu, N. Makimoto, T. Itoh, T. Kobayashi, Development of energy harvesting MEMS vibration device sensor with wideband response function in low-frequency domain. Microsyst. Technol. 28, 1389–1397 (2019)

    Article  Google Scholar 

  2. X. Yi, L. Zhao, P. Ouyang, H. Liu, T. Zhang, G. Li, High-quality film bulk acoustic resonators fabricated on AlN films grown by a new two-step method. IEEE Electron Device Lett. 43, 942–945 (2022)

    Article  ADS  Google Scholar 

  3. N.A. Strnad, W.L. Sarney, G.B. Rayner, R.R. Benoit, G.R. Fox, R.Q. Rudy, T.J. Larrabee, J. Shallenberger, J.S. Pulskamp, Plasma enhanced atomic layer deposition of textured aluminum nitride on platinized substrates for MEMS. J. Vac. Sci. Technol. A 40, 042403 (2022)

    Article  Google Scholar 

  4. K. Li, F. Wang, M. Deng, K. Hu, D. Song, Y. Hao, H. Di, K. Dong, S. Yan, Z. Song, K. Zhang, Microstructure and bending piezoelectric characteristics of AlN film for high-frequency flexible SAW devices. J. Mater. Sci. Mater. Electron. 32, 13146–13155 (2021)

    Article  Google Scholar 

  5. F. Wang, F. Xiao, D. Song, L. Qian, Y. Feng, B. Fu, K. Dong, C. Li, K. Zhang, Research of micro area piezoelectric properties of AlN films and fabrication of high frequency SAW devices. Microelectron. Eng. 199, 63–68 (2018)

    Article  Google Scholar 

  6. W.-K. Liu, K.-W. Tay, S.-C. Kuo, M.-J. Wu, Fabrication of piezoelectric AlN thin film for FBARs. Sci. China Ser. G 52, 226–232 (2009)

    Article  Google Scholar 

  7. C. Kai, H. Zang, J. Ben, K. Jiang, Z. Shi, Y. Jia, X. Cao, W. Lü, X. Sun, D. Li, Origination and evolution of point defects in AlN film annealed at high temperature. J. Lumin. 235, 118032 (2021)

    Article  Google Scholar 

  8. G. Chen, Y. Zhang, H. Zhang, L. Xie, Z. Xing, Z. Cheng, H. Li, Y. Xiao, H. Liang, H. Liu, X. Xie, L. Bian, G. Liu, Ultraviolet optical properties analysis of wurtzite AlN films grown by vapor phase epitaxy. Optical Mater. 111, 110678 (2021)

    Article  Google Scholar 

  9. A. Mahyuddin, A. Azrina, M.Z. Mohd Yusoff, Z. Hassan, Fabrication and characterization of AlN metal–insulator–semiconductor grown Si substrate. Mod. Phys. Lett. B 31, 1750313 (2017)

    Article  ADS  Google Scholar 

  10. A.F. Al-Hossainy, M.S. Zoromba, New organic semiconductor thin film derived from p-toluidine monomer. J. Mol. Struct. 1156, 83–90 (2018)

    Article  ADS  Google Scholar 

  11. A.M. Chowdhury, D.K. Singh, B. Roul, K.K. Nanda, S.B. Krupanidhi, Overcoming the challenges associated with the InN/InGaN heterostructure via a nanostructuring approach for broad band photodetection. ACS Appl. Electron. Mater. 3, 4243–4253 (2021)

    Article  Google Scholar 

  12. A. Kale, R.S. Brusa, A. Miotello, Structural and electrical properties of AlN films deposited using reactive RF magnetron sputtering for solar concentrator application. Appl. Surf. Sci. 258, 3450–3454 (2012)

    Article  ADS  Google Scholar 

  13. Y.Q. Fu, J.K. Luo, N.T. Nguyen, A.J. Walton, A.J. Flewitt, X.T. Zu, Y. Li, G. McHale, A. Matthews, E. Iborra, H. Du, W.I. Milne, Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater Sci. 89, 31–91 (2017)

    Article  Google Scholar 

  14. Z.X. Lin, S. Wu, R. Ro, M.S. Lee, Surface acoustic wave properties of (100) AlN films on diamond with different IDT positions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 1246 (2009)

    Article  Google Scholar 

  15. M. Kneissl, T.-Y. Seong, J. Han, H. Amano, The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 13, 233–244 (2019)

    Article  ADS  Google Scholar 

  16. D. Ünal, S.F. Varol, J. Brault, S. Chenot, M. Al Khalfioui, Z. Merdan, Improved performance of near UV-blue n-ZnO/p-GaN heterostructure LED with an AlN electron blocking layer. Microelectron. Eng. 262, 111830 (2022)

    Article  Google Scholar 

  17. S.H. Murtaza, S. Ahmed, M. Ali, Investigation of AlN/Si based heterogeneous Junction using inter-digitated electrodes for enhanced UV light detection. Optik 265, 169534 (2022)

    Article  ADS  Google Scholar 

  18. L. Gautam, J. Lee, G. Brown, M. Razeghi, Low dark current deep UV AlGaN photodetectors on AlN substrate. IEEE J. Quantum Electron. 58, 1–5 (2022)

    Article  Google Scholar 

  19. R. Yoshizawa, H. Miyake, K. Hiramatsu, Effect of thermal annealing on AlN films grown on sputtered AlN templates by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 57, 01AD05 (2018)

    Article  Google Scholar 

  20. L. Zhao, K. Yang, Y. Ai, L. Zhang, X. Niu, H. Lv, Y. Zhang, Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing. J. Mater. Sci. Mater. Electron. 29, 13766–13773 (2018)

    Article  Google Scholar 

  21. S.T. Ueda, A. McLeod, Y. Jo, Z. Zhang, J. Spiegelman, J. Spiegelman, D. Alvarez, D. Moser, R. Kanjolia, M. Moinpour, J. Woodruff, K. Cho, A.C. Kummel, Experimental and theoretical determination of the role of ions in atomic layer annealing. J. Mater. Chem. C 10, 5707–5715 (2022)

    Article  Google Scholar 

  22. J. Hakamata, Y. Kawase, L. Dong, S. Iwayama, M. Iwaya, T. Takeuchi, S. Kamiyama, H. Miyake, I. Akasaki, Growth of high-quality AlN and AlGaN films on sputtered AlN/sapphire templates via high-temperature annealing. Phys. Status Solidi B 255, 1700506 (2018)

    Article  ADS  Google Scholar 

  23. S. Xiao, R. Suzuki, H. Miyake, S. Harada, T. Ujihara, Improvement mechanism of sputtered AlN films by high-temperature annealing. J. Cryst. Growth 502, 41–44 (2018)

    Article  ADS  Google Scholar 

  24. M.M. Memon, S. Pan, J. Wan, T. Wang, B. Peng, W. Zhang, Sensitivity enhancement of SAW pressure sensor based on the crystalline direction. IEEE Sens. J. 22, 9329–9335 (2022)

    Article  ADS  Google Scholar 

  25. Y. Zang, L. Li, Z. Ren, L. Cao, Y. Zhang, Characterization of AlN thin film prepared by reactive sputtering. Surf. Interface Anal. 48, 1029–1032 (2016)

    Article  Google Scholar 

  26. M. Morita, K. Ishibashi, K. Takahashi, S. Ueda, J. Chen, K. Tatejima, T. Chikyow, A. Ogura, T. Nagata, Effect of reactive gas condition on nonpolar AlN film growth on MnS/Si (100) by reactive DC sputtering. Jpn J. Appl. Phys. 61, SC1071 (2022)

    Article  Google Scholar 

  27. G. Chen, H. Li, X. Xie, L. Xie, E. Wang, G. Liu, H. Zhang, B. Lu, C. Li, H. Pei, Influence of nitrogen flow ratio on properties of c-axis oriented AlN films grown by RF magnetron sputtering. Appl. Phys. A 127, 1–8 (2021)

    Article  Google Scholar 

  28. A. Iqbal, G. Walker, L. Hold, A. Fernandes, A. Lacopi, F. Mohd-Yasin, Sputtering of aluminium nitride (002) film on cubic silicon carbide on silicon (100) substrate: influences of substrate temperature and deposition power. J. Mater. Sci. Mater. Electron. 31, 239–248 (2019)

    Article  Google Scholar 

  29. M. Vanamoorthy, B. Salim, K. Mohanta, Study on optimizing c-axis oriented AlN thin film for piezoelectric sensing applications controlling the sputtering process parameters. Appl. Phys. A 128, 1–5 (2021)

    Google Scholar 

  30. J. Han, B. Cui, Y. Xing, T. Li, J. Zhao, X. Cao, Y. Zhang, B. Zhang, Influence of nitrogen flow ratio on the optical property of AlN deposited by DC magnetron sputtering on Si (100) substrate. Micro Nano Letters. 15, 556–560 (2020)

    Article  Google Scholar 

  31. J. Huang, M. Niu, M. Sun, X. Su, K. Xu, Investigation of hydride vapor phase epitaxial growth of AlN on sputtered AlN buffer layers. CrystEngComm 21, 2431–2437 (2019)

    Article  ADS  Google Scholar 

  32. C. Han, D. Chen, Y. Zhang, D. Xu, Y. Liu, S.W. Kong, Y. Zhang, High potential columnar nanocrystalline AlN films deposited by RF reactive magnetron sputtering. Nano-Micro Letters. 4, 40–44 (2012)

    Article  Google Scholar 

  33. J. Yin, B. Zhou, L. Li, Y. Liu, W. Guo, D.N. Talwar, K. He, I.T. Ferguson, L. Wan, Z.C. Feng, Optical and structural properties of AlN thin films deposited on different faces of sapphire substrates. Semicond. Sci. Technol. 36, 045012 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Foundation of Education Bureau of Hebei (Grant No. QN2021044), National Natural Science Foundation of China (Grant No. 61674051), the project for Science and Technology Correspondent of Tianjin City (Grant No. 20YDTPJC01710), the S&T Program of Hebei (Grant No. 20311001D).

Author information

Authors and Affiliations

Authors

Contributions

YH: writing–review and editing, writing–original draft, data curation. HZ: software, formal analysis, data curation, conceptualization. XX: supervision, resources, methodology, investigation. ZL: validation, software, resources, formal analysis. KG: validation, resources, methodology. YY: visualization, software, resources. YZ: validation, resources, methodology. GC: supervision, resources, funding acquisition, conceptualization.

Corresponding authors

Correspondence to Xinjian Xie or Guifeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhang, H., Xie, X. et al. The relationship between annealing and nitrogen flow ratios during magnetron sputtering of AlN films. Appl. Phys. A 129, 122 (2023). https://doi.org/10.1007/s00339-022-06311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06311-4

Keywords

Navigation