Skip to main content

Advertisement

Log in

Influence of structural defects on the physical properties of BiFeO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work is the first to study the influence of crystallite sizes and structural defects on the crystal structure and physical properties of bismuth ferrite BiFeO3 (BFO). Rotatable Bridgman anvils were used to generate the structural defects, with the uniaxial pressures ranging from 0.5 to 1 GPa. According to the X-ray diffraction analysis (XRD), the symmetry space group R3c remains unchanged over the entire pressure range. From the results of the complex impedance spectroscopy, it was found that the relaxation has a non-Debye character and the activation energy increased from 1.48 eV to 2.48 eV for the starting and mechanically activated samples at 1 GPa, respectively. The crystal lattice dynamics were studied by optical and FTIR spectroscopies, and it has been found that Eg varied in the range of 2.18–2.33 eV, whereas the force constant showed variation in the range of 2.2–2.4 N/cm, depending on the applied mechanical activation pressure. The magnetization curves M(H) have been described by the law of approach magnetization to saturation (LAS). Also, a possible critical crystallite size of 70 nm has been determined, at which Hc and Mr reach their maximum values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. J. Xue, Solid State Ionics 151, 403 (2002)

    Google Scholar 

  2. M. Savinov, P. Bednyakov, S.I. Raevskaya, A.A. Gusev, V.P. Isupov, I.P. Raevski, V.V. Titov, H. Chen, S.A. Kovrigina, C.-C. Chou, T.A. Minasyan, M.A. Malitskaya, Ferroelectrics 509, 80 (2017)

    ADS  Google Scholar 

  3. V. V Zyryanov, V. F. Sysoev, and V. V Boldyrev, in Dokl. Chem. Technol. (1988), pp. 51–53.

  4. K.G. Abdulvakhidov, E.N. Ubushaeva, I.V. Mardasova, M.A. Vitchenko, B.K. Abdulvakhidov, V.G. Zaletov, A.A. Amirov, I.K. Kamilov, A.S. Manukyan, P.S. Plyaka, G.B. Sukharina, Ferroelectrics 494, 182 (2016)

    Google Scholar 

  5. T.D. Shen, C.C. Koch, T.L. McCormick, R.J. Nemanich, J.Y. Huang, J.G. Huang, J. Mater. Res. 10, 139 (1995)

    ADS  Google Scholar 

  6. H.J. Fecht, Nature 356, 133 (1992)

    ADS  Google Scholar 

  7. G.J. Fan, F.Q. Guo, Z.Q. Hu, M.X. Quan, K. Lu, Phys. Rev. B 55, 11010 (1997)

    ADS  Google Scholar 

  8. L. Zhengyou, K. Abdulvakhidov, A. Nazarenko, A. Soldatov, P. Plyaka, Y. Rusalev, A. Manukyan, I. Dmitrenko, M. Sirota, Appl. Phys. A 128, 343 (2022)

    ADS  Google Scholar 

  9. M.A. Sirota, K.G. Abdulvakhidov, A.P. Budnyk, A.V. Soldatov, A.L. Bugaev, T.A. Lastovina, Y.V. Kabirov, M.I. Mazuritskiy, P.S. Plyaka, S.N. Kallaev, Z.M. Omarov, S.A. Sadykov, B.K. Abdulvakhidov, I.V. Mardasova, M.A. Vitchenko, Ferroelectrics 526, 1 (2018)

    ADS  Google Scholar 

  10. E.N. Ubushaeva, K.G. Abdulvakhidov, I.V. Mardasova, B.K. Abdulvakhidov, M.A. Vitchenko, A.A. Amirov, A.B. Batdalov, A.G. Gamzatov, Tech. Phys. 55, 1596 (2010)

    Google Scholar 

  11. S. Falahatnezhad, H. Maleki, A.M. Badizi, M. Noorzadeh, J. Mater. Sci. Mater. Electron. 30, 15972 (2019)

    Google Scholar 

  12. Y.M. Abbas, A.B. Mansour, S.E. Ali, A.H. Ibrahim, J. Magn. Magn. Mater. 482, 66 (2019)

    ADS  Google Scholar 

  13. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    ADS  Google Scholar 

  14. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    ADS  Google Scholar 

  15. C. E. Camayo, S. Gaona J., and C. F. V. Raigoza, J. Magn. Magn. Mater. 527, 167733 (2021).

  16. G. Le Bras, P. Bonville, D. Colson, A. Forget, N. Genand-Riondet, R. Tourbot, Phys. B Condens. Matter 406, 1492 (2011)

    ADS  Google Scholar 

  17. S. Atiq, M. Faizan, A.H. Khan, A. Mahmood, S.M. Ramay, S. Naseem, Results Phys. 12, 1269 (2019)

    ADS  Google Scholar 

  18. F. Pedro-García, F. Sánchez-De Jesús, C. A. Cortés-Escobedo, A. Barba-Pingarrón, and A. M. Bolarín-Miró, J. Alloys Compd. 711, 77 (2017).

  19. I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C Solid State Phys. 15, 4835 (1982)

    ADS  Google Scholar 

  20. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Google Scholar 

  21. S. Samanta, V. Sankaranarayanan, K. Sethupathi, Vacuum 156, 456 (2018)

    ADS  Google Scholar 

  22. B. Jaffe, W. R. Cook, and H. Jaffe, in Piezoelectric Ceram. (Elsevier, 1971), pp. 135–183.

  23. M.R. Soares, A.M.R. Senos, P.Q. Mantas, J. Eur. Ceram. Soc. 20, 321 (2000)

    Google Scholar 

  24. N.K. James, U. Lafont, S. van der Zwaag, W.A. Groen, Smart Mater. Struct. 23, 055001 (2014)

    ADS  Google Scholar 

  25. W. Kraus, G. Nolze, J. Appl. Crystallogr. 29, 301 (1996)

    Google Scholar 

  26. P. Suresh, B.K. Hazra, B.R. Kumar, T. Chakraborty, P.D. Babu, S. Srinath, J. Alloys Compd. 863, 158719 (2021)

    Google Scholar 

  27. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Google Scholar 

  28. M. Sirota, K. Abdulvakhidov, T. Lastovina, A. Pnevskaya, E. Ubushaeva, P. Plyaka, A. Nazarenko, M. Vitchenko, I. Mardasova, A. Budnyk, Phys. Status Solidi 218, 2000782 (2021)

    ADS  Google Scholar 

  29. K.G. Abdulvakhidov, M.A. Vitchenko, I.V. Mardasova, E.N. Oshaeva, Tech. Phys. 53, 661 (2008)

    Google Scholar 

  30. D. M. Vasil’ev and B. I. Smirnov, Sov. Phys. Uspekhi 4, 226 (1961).

  31. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Google Scholar 

  32. A.K. Jonscher, Nature 267, 673 (1977)

    ADS  Google Scholar 

  33. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    ADS  Google Scholar 

  34. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)

    ADS  Google Scholar 

  35. J.R. Macdonald, J. Electroanal. Chem. Interfacial Electrochem. 223, 25 (1987)

    Google Scholar 

  36. I. Coondoo, N. Panwar, M.N.A. Rafiq, V.S. Puli, M.N.A. Rafiq, R.S. Katiyar, Ceram. Int. 40, 9895 (2014)

    Google Scholar 

  37. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Google Scholar 

  38. S. Selvasekarapandian, M. Vijayakumar, Mater. Chem. Phys. 80, 29 (2003)

    Google Scholar 

  39. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, RSC Adv. 8, 4634 (2018)

    ADS  Google Scholar 

  40. K. Abdulvakhidov, I. Dmitrenko, A. Soldatov, Z. Li, M. Sirota, Appl. Phys. A 128, 88 (2022)

    ADS  Google Scholar 

  41. P. Kubelka, F. Munk, Z. Tech, Phys 12, 259 (1931)

    Google Scholar 

  42. R.V. Pisarev, A.S. Moskvin, A.M. Kalashnikova, T. Rasing, Phys. Rev. B 79, 235128 (2009)

    ADS  Google Scholar 

  43. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Google Scholar 

  44. G.B. Irani, T. Huen, F. Wooten, Phys. Rev. B 6, 2904 (1972)

    ADS  Google Scholar 

  45. E.A. Davis, N.F. Mott, Philos. Mag. 22, 0903 (1970)

    ADS  Google Scholar 

  46. S. Zeljković, T. Ivas, H. Maruyama, J.C. Nino, Ceram. Int. 45, 19793 (2019)

    Google Scholar 

  47. J.T. Last, Phys. Rev. 105, 1740 (1957)

    ADS  Google Scholar 

  48. B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya, D. Das, J. Phys. D. Appl. Phys. 42, 65004 (2009)

    Google Scholar 

  49. V.M. Gaikwad, S.A. Acharya, J. Appl. Phys. 114, 193901 (2013)

    ADS  Google Scholar 

  50. H.M. Tütüncü, G.P. Srivastava, Phys. Rev. B 78, 235209 (2008)

    ADS  Google Scholar 

  51. Z. Chen, G. Zhan, X. He, H. Yang, H. Wu, Cryst. Res. Technol. 46, 309 (2011)

    Google Scholar 

  52. A. Manzoor, S.K. Hasanain, A. Mumtaz, M.F. Bertino, L. Franzel, J. Nanoparticle Res. 14, 1310 (2012)

    ADS  Google Scholar 

  53. R.S. Iskhakov, S.V. Komogortsev, Phys. Met. Metallogr. 112, 666 (2011)

    ADS  Google Scholar 

  54. V. ~A. Ignatchenko, R. ~S. Iskhakov, and G. ~V. Popov, Sov. J. Exp. Theor. Phys. 55, 878 (1982).

  55. H. Zhang, D. Zeng, Z. Liu, J. Magn. Magn. Mater. 322, 2375 (2010)

    ADS  Google Scholar 

  56. E.C. Devi, I. Soibam, J. Supercond. Nov. Magn. 32, 1293 (2019)

    Google Scholar 

  57. K. Abdulvakhidov, A. Soldatov, I. Dmitrenko, Z. Li, S. Kallaev, Z. Omarov, Results Phys. 22, 103905 (2021)

    Google Scholar 

  58. G. I. Frolov, O. I. Bachina, M. M. Zav’yalova, S. I. Ravochkin, M. M. Zav’yalova, and S. I. Ravochkin, Tech. Phys. 53, 1059 (2008)

Download references

Acknowledgements

The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation (State assignment in the field of scientific activity, No. 0852-2020-0019).

Funding

Ministry of Science and Higher Education of the Russian Federation, 0852-2020-0019, Alexander Soldatov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaludin Abdulvakhidov.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitrenko, I., Abdulvakhidov, K., Soldatov, A. et al. Influence of structural defects on the physical properties of BiFeO3. Appl. Phys. A 128, 1128 (2022). https://doi.org/10.1007/s00339-022-06271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06271-9

Keywords

Navigation