Skip to main content
Log in

Improved ferromagnetism and transport behaviour in La2CoMnO6 double perovskite by Ni doping at the Co site

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Doping at the transition metal oxide site of double perovskites offers distinct and fascinating functionality when compared to their undoped counterparts. In this work, magnetic and transport properties are investigated in detail in doped polycrystalline La2Co1-xNixMnO6 (x = 0 as La2CoMnO6, x = 0.1 as La2Co0.9Ni0.1MnO6, x = 0.5 as La2Co0.5Ni0.5MnO6) double perovskite systems. With Ni substitution at the Co site in the x = 0 sample, magnetic behaviour, particularly ferromagnetic transition temperature, increases, whereas coercive field and remanent magnetization decrease evidently for the x = 0.5 sample, implying the soft ferromagnetic nature. Magnetic investigations show an increase in the ferromagnetic transition temperature from ~ 230 K for the x = 0 to ~ 242 K for the x = 0.5 sample. The x = 0.5 sample exhibits a frustrated magnetic system due to competing magnetic couplings (Ni–Mn and Co–Mn ion pairs). Electrical resistivity measurements validate the semiconducting behaviour of all the studied systems near room temperature and insulating nature at low temperature regime along with resistivity anomaly near the magnetic ordering temperature. The system x = 0.1 shows large magnetoresistance value ~ −34% at ~ 150 K. The variable-range hopping model is used to best understand their transport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, TKN, upon reasonable request.

References

  1. K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G.E. Bauer, S. Maekawa, E. Saitoh, Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010)

    ADS  Google Scholar 

  2. P. Mahadevan, A. Kumar, D. Choudhury, D.D. Sarma, Charge ordering induced ferromagnetic insulator: K2Cr8O16. Phys. Rev. Lett. 104, 256401 (2010)

    ADS  Google Scholar 

  3. K. Hasegawa, M. Isobe, T. Yamauchi, H. Ueda, J. Yamaura, H. Gotou, T. Yagi, H. Sato, Y. Ueda, Discovery of ferromagnetic-half-metal-to-insulator transition in K2Cr8O16. Phys. Rev. Lett. 103, 146403 (2009)

    ADS  Google Scholar 

  4. D.N. Argyriou, J.F. Mitchell, C.D. Potter, D.G. Hinks, J.D. Jorgensen, S.D. Bader, Lattice effects and magnetic order in the canted ferromagnetic insulator La0.875Sr0.125MnO3+d. Phys. Rev. Lett. 76, 3826–3829 (1996)

    ADS  Google Scholar 

  5. C. Ulrich, G. Khaliullin, S. Okamoto, M. Reehuis, A. Ivanov, H. He, Y. Taguchi, Y. Tokura, B. Keimer, Magnetic order and dynamics in an orbitally degenerate ferromagnetic insulator. Phys. Rev. Lett. 89, 167202 (2002)

    ADS  Google Scholar 

  6. Z. Wang, Y. Sun, M. Wu, V. Tiberkevich, A. Slavin, Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys. Rev. Lett. 107, 146602 (2011)

    ADS  Google Scholar 

  7. Z. Wang, C. Tang, R. Sachs, Y. Barlas, J. Shi, Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Phys. Rev. Lett. 114, 016603 (2015)

    ADS  Google Scholar 

  8. M.A. Subramanian, A.P. Ramirez, W.J. Marshall, Structural tuning of ferromagnetism in a 3D cuprate perovskite. Phys. Rev. Lett. 82, 1558 (1999)

    ADS  Google Scholar 

  9. A.M. Goldman, P.J. Kreisman, D.J. Scalapino, Metastable current-carrying states of weakly coupled superconductors. Phys. Rev. Lett. 15, 495 (1965)

    ADS  Google Scholar 

  10. A.M. Santos, S. Parashar, A.R. Raju, Y.S. Zhao, A.K. Cheetham, C.N.R. Rao, Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 122, 49–52 (2002)

    ADS  Google Scholar 

  11. B.T. Matthias, R.M. Bozorth, J.H. Van Vleck, Ferromagnetic interaction in EuO. Phys. Rev. Lett. 7, 160 (1961)

    ADS  Google Scholar 

  12. S. von Molnar, A.W. Lawson, Ferromagnetic and paramagnetic resonance in EuS. Phys. Rev. 139, A1598 (1965)

    Google Scholar 

  13. D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, A. Sundaresan, S. Rajan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, D.D. Sarma, Near-room-temperature colossal magnetodielectricity and multiglass properties in partially disordered La2NiMnO6. Phys. Rev. Lett. 108, 127201 (2012)

    ADS  Google Scholar 

  14. S. Baidya, T. Saha-Dasgupta, Electronic structure and phonons in La2CoMnO6: a ferromagnetic insulator driven by Coulomb-assisted spin-orbit coupling. Phys. Rev. B 84, 035131 (2011)

    ADS  Google Scholar 

  15. X.-L. Wang, X.-L. Wang, M. James, J. Horvat, S.X. Dou, Spin glass behaviour in ferromagnetic La2CoMnO6 perovskite manganite. Superconductor Sci Technol 15(3), 427–430 (2002)

    ADS  Google Scholar 

  16. R.C. Sahoo, D. Paladhi, P. Dasgupta, A. Poddar, R. Singh, A. Das, T.K. Nath, Antisite-disorder driven large exchange bias effect in phase separated La1.5Ca0.5CoMnO6 double perovskite. J. Magn. Magn. Mater. 428, 86 (2017)

    ADS  Google Scholar 

  17. R. Pradheesh, H.S. Nair, V. Sankaranarayanan, K. Sethupathi, Exchange bias and memory effect in double perovskite Sr2FeCoO6. Appl. Phys. Lett. 101, 142401 (2012)

    ADS  Google Scholar 

  18. S. Sharma, T. Basu, A. Shahee, K. Singh, N.P. Lalla, E.V. Sampathkumaran, Multiglass properties and magnetoelectric coupling in the uniaxial anisotropic spin-cluster-glass Fe2TiO5. Phys. Rev. B 90, 144426 (2014)

    ADS  Google Scholar 

  19. Y.W. Windsor, M. Ramakrishnan, L. Rettig, A. Alberca, T. Lippert, C.W. Schneider, U. Staub, Multiple magnetic ordering phenomena in multiferroic o−HoMnO3. Phys. Rev. B 102, 214423 (2020)

    ADS  Google Scholar 

  20. R.I. Dass, J.B. Goodenough, Multiple magnetic phases of La2CoMnO6−δ (0<~δ<~0.05). Phys. Rev. B 67, 14401 (2003)

    ADS  Google Scholar 

  21. J. Krishna Murthy, A. Venimadhav, Reentrant cluster glass behavior in La2CoMnO6 nanoparticles. J. Appl. Phys. 113, 163906 (2013)

    ADS  Google Scholar 

  22. S. Pal, S. Govinda, M. Goyal, S. Mukherjee, B. Pal, R. Saha, A. Sundaresan, S. Jana, O. Karis, J.W. Freeland, D.D. Sarma, Effect of anti-site disorder on magnetism in La2NiMnO6. Phys. Rev. B 97, 165137 (2018)

    ADS  Google Scholar 

  23. A. Hossain, A.K.M. Atique Ullah, P.S. Guin, S. Roy, An overview of La2NiMnO6 double perovskites: synthesis, structure, properties, and applications. J. Sol-Gel Sci. Technol. 93, 479 (2020)

    Google Scholar 

  24. N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv. Mater. 17, 2225 (2005)

    Google Scholar 

  25. S. Das, R.C. Sahoo, S. Mishra, D. Bhattacharya, T.K. Nath, Effects of Ni doping at Co-site on dielectric, impedance spectroscopy and AC-conductivity in La2CoMnO6 double perovskites. Appl. Phys. A 128, 354 (2022)

    ADS  Google Scholar 

  26. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, London, 1971)

    Google Scholar 

  27. R.C. Sahoo, S. Das, D. Daw, R. Singh, A. Das, T.K. Nath, Tuning of multi-magnetic phase and exchange bias effect by antisite disorder in Ca-doped La2CoMnO6 double perovskites. J. Phys. Condens. Matter 33, 215804 (2021)

    ADS  Google Scholar 

  28. M.P. Singh, K.D. Truong, P. Fournier, Magnetodielectric effect in double perovskite La2CoMnO6 thin films. Appl. Phys. Lett. 91, 042504 (2007)

    ADS  Google Scholar 

  29. R.C. Sahoo, S. Das, T.K. Nath, Effect of rare earth site substitution on magnetic and transport properties of Ln2CoMnO6 (Ln = La, Sm and Gd) double perovskites. J. Magn. Magn. Mater. 460, 409 (2018)

    ADS  Google Scholar 

  30. K.D. Truong, J. Laverdière, M.P. Singh, S. Jandl, P. Fournier, Impact of Co/Mn cation ordering on phonon anomalies in La2CoMnO6 double perovskites: Raman spectroscopy. Phys. Rev. B 76, 132413 (2007)

    ADS  Google Scholar 

  31. L. Chen, C. Yuan, J. Xue, J. Wang, B-site ordering and magnetic behaviours in Ni-doped double perovskite Sr2FeMoO6. J. Phys. D Appl. Phys. 38, 4003 (2005)

    ADS  Google Scholar 

  32. R.B. Griffiths, Nonanalytic behaviour above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17 (1969)

    ADS  Google Scholar 

  33. Y.Q. Lin, X.M. Chen, Dielectric, ferromagnetic characteristics, and room-temperature magnetodielectric effects in double perovskite La2CoMnO6 ceramics. J. Am. Ceram. Soc. 94, 782 (2011)

    Google Scholar 

  34. S.G. Sankar, V.U.S. Rao, E. Segal, W.E. Wallace, Magnetocrystalline anisotropy of SmCo5 and its interpretation on a crystal-field model. Phys. Rev. B 11, 435 (1975)

    ADS  Google Scholar 

  35. J. Navarro, C. Frontera, L. Balcells, B. Martínez, J. Fontcuberta, Raising the Curie temperature in Sr2FeMoO6 double perovskites by electron doping. Phys. Rev. B 64, 092411 (2001)

    ADS  Google Scholar 

  36. M.N. Iliev, M.V. Abrashev, A.P. Litvinchuk, V.G. Hadjiev, H. Guo, A. Gupta, Raman spectroscopy of ordered double perovskite La2CoMnO6 thin films. Phys. Rev. B 75, 104118 (2007)

    ADS  Google Scholar 

  37. V.D. Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron Spectrosc. Relat. Phenom. 48, 117 (1989)

    Google Scholar 

  38. V.L.J. Joly, P.A. Joy, S.K. Date, C.S. Gopinath, Two ferromagnetic phases with different spin states of Mn and Ni in LaMn0.5Ni0.5O3. Phys. Rev. B 65, 184416 (2002)

    ADS  Google Scholar 

  39. S.Z. Li, C. Zhu, Z.B. Yan, S.J. Luo, K.F. Wang, J.M. Liu, Ferroelectricity and ferromagnetism of La0.5Lu0.5Ni0.5Mn0.5O3 thin films on Nb:SrTiO3 substrates. J. Phys. Cond. Matt. 22, 206005 (2010)

    ADS  Google Scholar 

  40. M. Cheng, H. Fan, Y. Song, Y. Cui, R. Wang, Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors. Dalton Trans. 46, 9201 (2017)

    Google Scholar 

  41. R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, Colossal magnetoresistance in the double perovskite oxide. J. Appl. Phys. 107, 09D714 (2010)

    Google Scholar 

  42. P.K. Siwach, U.K. Goutam, P. Srivastava, H.K. Singh, R.S. Tiwari, O.N. Srivastava, Colossal magnetoresistance study in nanophasic La0.7Ca0.3MnO3 manganite. J. Phys. D Appl. Phys. 39, 14 (2006)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Central Research Facility of IIT Kharagpur for necessary equipment support for various measurements for characterization of the samples for this research work. One of the authors (TKN) would like to acknowledge the partial funding from CRS project of UGC-DAE CSR, Indore with project no. CSR-IC-257/2017-18/1338 to carry out some of this research works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Nath.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sahoo, R.C., Shit, S. et al. Improved ferromagnetism and transport behaviour in La2CoMnO6 double perovskite by Ni doping at the Co site. Appl. Phys. A 128, 1101 (2022). https://doi.org/10.1007/s00339-022-06250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06250-0

Keywords

Navigation