Skip to main content
Log in

Complex dielectric behaviours in BiFeO3/Bi2Fe4O9 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The complex dielectric permittivity of a sintered ceramic tablet consisting of 70.5% BiFeO3, 27.7% Bi2Fe4O9 and 1.8% Bi25FeO40 was analyzed as a function of temperature from – 120 °C to 230 °C in two separate temperature runs. The results reveal a complicated dielectric response with two temperature activated relaxation processes. The first is purely Arrhenius relaxation related to hopping processes between Fe3+ and Fe2+ traps induced by oxygen vacancies at grain boundaries. The second process is more unusual. Its characteristic relaxation time follows a quasi-Vogel–Tammann–Fulcher temperature behavior and from fitting the critical temperature point is estimated at \({ T}_{0}=766 K\). It is absent in the second temperature run. It can be related to dynamic rearrangements of domain boundaries between different crystallites in the ceramic. The results also reveal a ferroelectric phase transition that decayed with repeated heating cycles of the tablet. The ferroelectric phase transition in pure BiFeO3 is 1098 K, whereas the current results show it at 373 K. The origin of this reduction in the critical temperature of the phase transition is traced to locally induced strains on grain boundaries mainly because of unit cell size mismatch between BiFeO3 and Bi2Fe4O9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data is available on request from the Corresponding Author

References

  1. A.M. Kadomtseva, Yu.F. Popov, A.P. Pyatakov, G.P. Vorobev, A.K. Zvezdin, D. Viehland, Phase Transit. 79, 1019 (2006)

    Article  Google Scholar 

  2. P. Curie, J. Phys. Theor. Appl. 3, 393 (1894)

    Article  Google Scholar 

  3. G.D. Achenbach, W.J. James, R. Gerson, J. Am. Ceram. Soc. 50, 437 (1967)

    Article  Google Scholar 

  4. I. Velasco-Davalos, F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, A. Ruediger, AIP Adv. 6, 065117 (2016)

    Article  ADS  Google Scholar 

  5. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  6. C. Michel, J.-M. Moreau, G.D. Achenbach, R. Gerson, W.J. James, Solid State Commun. 7, 701 (1969)

    Article  ADS  Google Scholar 

  7. D.V. Karpinsky, E.A. Eliseev, F. Xue, M.V. Silibin, A. Franz, M.D. Glinchuk, I.O. Troyanchuk, S.A. Gavrilov, V. Gopalan, L.-Q. Chen, A.N. Morozovska, Npj Comput Mater 3, 1 (2017)

    Article  Google Scholar 

  8. N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, Y. Yang, Nano-Micro Lett. 12, 81 (2020)

    Article  ADS  Google Scholar 

  9. V.V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Appl. Phys. Lett. 90, 172115 (2007)

    Article  ADS  Google Scholar 

  10. A. Crassous, R. Bernard, S. Fusil, K. Bouzehouane, D. Le Bourdais, S. Enouz-Vedrenne, J. Briatico, M. Bibes, A. Barthélémy, J.E. Villegas, Phys. Rev. Lett. 107, 247002 (2011)

    Article  ADS  Google Scholar 

  11. J. Allibe, S. Fusil, K. Bouzehouane, C. Daumont, D. Sando, E. Jacquet, C. Deranlot, M. Bibes, A. Barthélémy, Nano Lett. 12, 1141 (2012)

    Article  ADS  Google Scholar 

  12. P. Hemme, P. Djemia, P. Rovillain, Y. Gallais, A. Sacuto, A. Forget, D. Colson, E. Charron, B. Perrin, L. Belliard, M. Cazayous, Appl. Phys. Lett. 118, 062902 (2021)

    Article  ADS  Google Scholar 

  13. A. Kirsch, M.M. Murshed, F.J. Litterst, T.M. Gesing, J. Phys. Chem. C 123, 3161 (2019)

    Article  Google Scholar 

  14. K.J.D. MacKenzie, T. Dougherty, J. Barrel, J. Eur. Ceram. Soc. 28, 499 (2008)

    Article  Google Scholar 

  15. M. Curti, T.M. Gesing, M.M. Murshed, T. Bredow, C.B. Mendive, Z. Für Kristallographie Cryst. Mater. 228, 629 (2013)

    Google Scholar 

  16. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, n.d.).

  17. B.A. Strukov, A.P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Springer-Verlag, Berlin Heidelberg, 1998)

    Book  MATH  Google Scholar 

  18. S. Kumari, N. Ortega, A. Kumar, S.P. Pavunny, J.W. Hubbard, C. Rinaldi, G. Srinivasan, J.F. Scott, R.S. Katiyar, J. Appl. Phys. 117, 114102 (2015)

    Article  ADS  Google Scholar 

  19. E. Markiewicz, B. Hilczer, M. Błaszyk, A. Pietraszko, E. Talik, J Electroceram 27, 154 (2011)

    Article  Google Scholar 

  20. Q. Li, S. Bao, Y. Sun, J. Li, Z. Yu, Y. Li, S. Zhang, Y. Liu, Z. Cheng, J. Alloy. Compd. 735, 2081 (2018)

    Article  Google Scholar 

  21. A. Perejón, E. Gil-González, P.E. Sánchez-Jiménez, A.R. West, L.A. Pérez-Maqueda, J. Eur. Ceram. Soc. 39, 330 (2019)

    Article  Google Scholar 

  22. G. Orr, A. Goryachev, G. Golan, Bulg. Chem 52, 40 (2020)

    Google Scholar 

  23. S. Chakraborty, M. Pal, New J. Chem. 42, 7188 (2018)

    Article  Google Scholar 

  24. S.M. Selbach, M.-A. Einarsrud, T. Grande, Chem. Mater. 21, 169 (2009)

    Article  Google Scholar 

  25. J. Rodriguez-Carvajal, in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (International Union of Crystallography, Toulouse, France, 1990), p. 127.

  26. S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, J Appl Crystallogr 42, 726 (2009)

    Article  Google Scholar 

  27. T. A. Para and S. K. Sarkar, Challenges in Rietveld Refinement and Structure Visualization in Ceramics (IntechOpen, 2021).

  28. User’s Manual “Alpha High Resolution Dielectric Analyser”, (Novocontrol GmbH, 2000)

  29. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  ADS  Google Scholar 

  30. N.N. Krainik, N.P. Khuchua, V.V. Zhdanova, V.A. Evseev, Sov. Phys. Solid State 8, 654 (1966)

    Google Scholar 

  31. M.A. Carpenter, E.K.H. Salje, A. Graeme-Barber, Eur. J. Mineral. 10(4), 621 (1998)

    Article  ADS  Google Scholar 

  32. A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics P. London, 1995)

  33. N. Axelrod, E. Axelrod, A. Gutina, A. Puzenko, P. Ben Ishai, Y. Feldman, Measure. Sci. Technol. 15, 755 (2004)

    Article  ADS  Google Scholar 

  34. Matlab, Mathsworks (n.d.)

  35. A. Perejón, N. Masó, A.R. West, P.E. Sánchez-Jiménez, R. Poyato, J.M. Criado, L.A. Pérez-Maqueda, J. Am. Ceram. Soc. 96, 1220 (2013)

    Article  Google Scholar 

  36. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy, in Theory of Dielectric Relaxation. ed. by F. Kremer, A. Schönhals (Springer, Berlin, 2003), pp.1–33

    Google Scholar 

  37. F. Kremer, A. Schönhals, in Broadband Dielectric Spectroscopy, in The Scaling of the Dynamics of Glasses and Supercooled Liquids. ed. by F. Kremer, A. Schönhals (Springer, Heidelberg, 2003), pp.99–129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ben Ishai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orr, G., Gorychev, A. & Ishai, P.B. Complex dielectric behaviours in BiFeO3/Bi2Fe4O9 ceramics. Appl. Phys. A 128, 1095 (2022). https://doi.org/10.1007/s00339-022-06234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06234-0

Keywords

Navigation