Skip to main content

Advertisement

Log in

Fabrication of highly stable Titania photoanode with enhanced photocurrent density

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Water splitting using photoelectrochemical technology is an excellent way to generate clean hydrogen, for which TiO2 is regarded as the most promising photoanode because of its unique properties. The large band gap and high recombination rate of charge carriers, however, limit its solar-to-hydrogen conversion efficiency. Herein, we fabricated the reduced TiO2 nanotubes by electrochemical anodization technique followed by hydrazine treatment to create oxygen vacancies (or Ti3+ sites) in the sample. The samples were then characterized by XRD and FESEM for structural and morphological analysis, validating the formation of Titania nanotube arrays (TNTA). Absorbance spectra of hydrazine-treated samples showed the absorption edge at about 447 nm, which corresponds to a band gap of 2.67 eV. This reduction in the band gap may be due to the introduction of Ti3+ states beneath the conduction band, as confirmed by XPS spectra. Photoluminescence spectra depicted the presence of oxygen vacancies in the hydrazine-treated sample. The hydrazine treatment, as a result of the introduction of Ti3+ states, enhanced the photocurrent density of the sample without affecting its photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding author.

References

  1. H. Eidsvåg, S. Bentouba, P. Vajeeston, S. Yohi, D. Velauthapillai, TiO2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules 26, 1–30 (2021). https://doi.org/10.3390/molecules26061687

    Article  Google Scholar 

  2. P. Sharma, M.L. Kolhe, Review of sustainable solar hydrogen production using photon fuel on artificial leaf. Int. J. Hydrogen Energy. 42, 22704–22712 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.115

    Article  Google Scholar 

  3. Y.H. Chiu, T.H. Lai, C.Y. Chen, P.Y. Hsieh, K. Ozasa, M. Niinomi, K. Okada, T.F.M. Chang, N. Matsushita, M. Sone, Y.J. Hsu, Fully depleted Ti-Nb-Ta-Zr-O nanotubes: interfacial charge dynamics and solar hydrogen production. ACS Appl. Mater. Interfaces. 10, 22997–23008 (2018). https://doi.org/10.1021/acsami.8b00727

    Article  Google Scholar 

  4. J. Bansal, R. Tabassum, S.K. Swami, S. Bishnoi, P. Vashishtha, G. Gupta, S.N. Sharma, A.K. Hafiz, Performance analysis of anomalous photocatalytic activity of Cr-doped TiO2 nanoparticles [Cr(x)TiO2(1–x)]. Appl. Phys. A Mater. Sci. Process. 126, 1–10 (2020). https://doi.org/10.1007/s00339-020-03536-z

    Article  Google Scholar 

  5. J. Bansal, A.K. Hafiz, S.N. Sharma, Photoreduction of dye with noble metal gold permeated with metal oxide titania. J. Nanosci. Nanotechnol. 20, 3896–3901 (2019). https://doi.org/10.1166/jnn.2020.17501

    Article  Google Scholar 

  6. P. Acevedo-Peña, I. González, Relation between morphology and photoelectrochemical performance of TiO2 nanotubes arrays grown in ethylene glycol/water. Proc. Chem. 12, 34–40 (2014). https://doi.org/10.1016/j.proche.2014.12.038

    Article  Google Scholar 

  7. P. Deák, J. Kullgren, B. Aradi, T. Frauenheim, L. Kavan, Water splitting and the band edge positions of TiO2. Electrochim. Acta. 199, 27–34 (2016). https://doi.org/10.1016/j.electacta.2016.03.122

    Article  Google Scholar 

  8. M. Zare, S. Solaymani, A. Shafiekhani, S. Kulesza, Ş Ţǎlu, M. Bramowicz, Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. Sci. Rep. 8, 1–11 (2018). https://doi.org/10.1038/s41598-018-29247-3

    Article  Google Scholar 

  9. R.A. Zargar, R.A. Zargar, N. Boora, M.M. Hassan, M.M. Hassan, A. Khan, A.K. Hafiz, Screen printed TiO2 film: a candidate for photovoltaic applications. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab9ceb

    Article  Google Scholar 

  10. V.S. Katta, M. Velpandian, V.R. Chappidi, M.S. Ahmed, A. Kumar, S. Asthana, P. Meduri, S.S.K. Raavi, Er3+ doped titania photoanode for enhanced performance of photo-electrochemical water splitting devices. Mater. Lett. 302, 130297 (2021). https://doi.org/10.1016/j.matlet.2021.130297

    Article  Google Scholar 

  11. A. Mir, K. Iqbal, S. Rubab, M.A. Shah, Effect of concentration of Fe-dopant on the photoelectrochemical properties of Titania nanotube arrays. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.09.037

    Article  Google Scholar 

  12. M. Motola, L. Hromadko, J. Prikryl, H. Sopha, M. Krbal, J.M. Macak, Intrinsic properties of high-aspect ratio single- and double-wall anodic TiO2 nanotube layers annealed at different temperatures. Electrochim. Acta. 352, 136479 (2020). https://doi.org/10.1016/j.electacta.2020.136479

    Article  Google Scholar 

  13. Katta, V.S., Das, A., Dileep K., R., Cilaveni, G., Pulipaka, S., Veerappan, G., Ramasamy, E., Meduri, P., Asthana, S., Melepurath, D., Raavi, S.S.K.: Vacancies induced enhancement in neodymium doped titania photoanodes based sensitized solar cells and photo-electrochemical cells. Sol. Energy Mater. Sol. Cells. 220, 110843 (2021). https://doi.org/10.1016/j.solmat.2020.110843

  14. J. Bansal, S.K. Swami, R. Tabassum, S.N. Sharma, A.K. Hafiz, Encapsulation of Cu-doped TiO2 nanocomposites with the understanding of weak photocatalytic properties for sunscreen applications. J. Dispers. Sci. Technol. 43, 364–374 (2022). https://doi.org/10.1080/01932691.2020.1841653

    Article  Google Scholar 

  15. S. Zhou, S. Liu, K. Su, K. Jia, Facile synthesis of Ti3+ self-doped and sulfur-doped TiO2 nanotube arrays with enhanced visible-light photoelectrochemical performance. J. Alloys Compd. 804, 10–17 (2019). https://doi.org/10.1016/j.jallcom.2019.06.294

    Article  Google Scholar 

  16. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856–11857 (2010). https://doi.org/10.1021/ja103843d

    Article  Google Scholar 

  17. K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, Y. Harima, Electron-transfer reaction of oxygen species on TiO2 nanoparticles induced by Sub-band-gap illumination. J. Phys. Chem. C. 114, 1240–1245 (2010). https://doi.org/10.1021/jp909678e

    Article  Google Scholar 

  18. Y. Xu, R. Ahmed, D. Klein, S. Cap, K. Freedy, S. McDonnell, G. Zangari, Improving photo-oxidation activity of water by introducing Ti3+ in self-ordered TiO2 nanotube arrays treated with Ar/NH3. J. Power Sources. 414, 242–249 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.083

    Article  ADS  Google Scholar 

  19. J. Song, M. Zheng, X. Yuan, Q. Li, F. Wang, L. Ma, Y. You, S. Liu, P. Liu, D. Jiang, L. Ma, W. Shen, Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. J. Mater. Sci. 52, 6976–6986 (2017). https://doi.org/10.1007/s10853-017-0930-z

    Article  ADS  Google Scholar 

  20. Y. Fu, A. Mo, A review on the electrochemically self-organized titania nanotube arrays: synthesis, modifications, and biomedical applications. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2597-z

    Article  Google Scholar 

  21. K. Arifin, R.M. Yunus, L.J. Minggu, M.B. Kassim, Improvement of TiO2 nanotubes for photoelectrochemical water splitting: review. Int. J. Hydrogen Energy. 46, 4998–5024 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.063

    Article  Google Scholar 

  22. Z. Su, W. Zhou, Formation, morphology control and applications of anodic TiO2 nanotube arrays. J. Mater. Chem. 21, 8955–8970 (2011). https://doi.org/10.1039/c0jm04587j

    Article  Google Scholar 

  23. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J. Mater. Chem. A. 1, 5766–5774 (2013). https://doi.org/10.1039/c3ta10689f

    Article  Google Scholar 

  24. M.A. Boda, M.A. Shah, Fabrication mechanism of compact TiO2 nanotubes and their photo-electrochemical ability. Mater. Res. Express. (2017). https://doi.org/10.1088/2053-1591/aa7cd2

    Article  Google Scholar 

  25. A. Mir, M.A. Shah, Cyclic voltammetry response of TiO2 nanostructures prepared via fast and facile microwave irradiation. Bull. Mater. Sci. (2022). https://doi.org/10.1007/s12034-022-02703-7

    Article  Google Scholar 

  26. K.S. Ali, R. Karunanithi, M. Prashanth, S. Sivasakaran, B. Subramanian, H.S. Jailani, Structure and mechanical properties of in-situ synthesized α-Ti/TiO2/TiC hybrid composites through mechanical milling and spark plasma sintering. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2021.12.342

    Article  Google Scholar 

  27. J.F. Mir, S. Rubab, M.A. Shah, Hematite (α-Fe2O3) nanosheets with enhanced photo-electrochemical ability fabricated via single step anodization. Chem. Phys. Lett. (2020). https://doi.org/10.1016/j.cplett.2020.137584

    Article  Google Scholar 

  28. S.W. Park, J.T. Jang, J. Cheon, H.H. Lee, D.R. Lee, Y. Lee, Shape-dependent compressibility of TiO2 anatase nanoparticles. J. Phys. Chem. C. 112, 9627–9631 (2008). https://doi.org/10.1021/jp801555a

    Article  Google Scholar 

  29. J. Bansal, S.K. Swami, A. Singh, T. Sarao, V. Dutta, A.K. Hafiz, S.N. Sharma, Apparatus-dependent sol-gel synthesis of TiO2 nanoparticles for dye-sensitized solar cells. J. Dispers. Sci. Technol. 42, 432–439 (2021). https://doi.org/10.1080/01932691.2019.1699427

    Article  Google Scholar 

  30. V.N. Kuznetsov, N.I. Glazkova, R.V. Mikhaylov, N. Serpone, Additional specific channel of photoactivation of solid semiconductors. A revisit of the thermo-/photo-stimulated bleaching of photoinduced Ti3+ color centers in visible-light-active photochromic rutile titania. J. Phys. Chem. C. 122, 13294–13303 (2018). https://doi.org/10.1021/acs.jpcc.7b08998

    Article  Google Scholar 

  31. Sekiya, T., Yagisawa, T., Kamiya, N., Mulmi, D. Das, Kurita, S., Murakami, Y., Kodaira, T.: Defects in anatase TiO2 single crystal controlled by heat treatments. J. Phys. Soc. Japan. 73, 703–710 (2004). https://doi.org/10.1143/JPSJ.73.703

  32. A. Mateen Tantray, M.A. Shah, Photo electrochemical ability of dense and aligned ZnO nanowire arrays fabricated through electrochemical anodization. Chem. Phys. Lett. 747, 137346 (2020). https://doi.org/10.1016/j.cplett.2020.137346

    Article  Google Scholar 

  33. V.N. Kuznetsov, N. Serpone, On the origin of the spectral bands in the visible absorption spectra of visible-light-active TiO2 specimens analysis and assignments. J. Phys. Chem. C. 113, 15110–15123 (2009). https://doi.org/10.1021/jp901034t

    Article  Google Scholar 

  34. C. Kim, S. Kim, J. Lee, J. Kim, J. Yoon, Capacitive and oxidant generating properties of black-colored TiO2 nanotube array fabricated by electrochemical self-doping. ACS Appl. Mater. Interfaces. 7, 7486–7491 (2015). https://doi.org/10.1021/acsami.5b00123

    Article  Google Scholar 

  35. W. Liao, J. Yang, H. Zhou, M. Murugananthan, Y. Zhang, Electrochemically self-doped TiO2 nanotube arrays for efficient visible light photoelectrocatalytic degradation of contaminants. Electrochim. Acta. 136, 310–317 (2014). https://doi.org/10.1016/j.electacta.2014.05.091

    Article  Google Scholar 

  36. W.W. Gärtner, Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959). https://doi.org/10.1103/PhysRev.116.84

    Article  ADS  Google Scholar 

  37. Y. Yang, J. Liao, Y. Li, X. Cao, N. Li, C. Wang, S. Lin, Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study. RSC Adv. 6, 46871–46878 (2016). https://doi.org/10.1039/c6ra05805a

    Article  ADS  Google Scholar 

  38. H. Choi, D. Shin, B.C. Yeo, T. Song, S.S. Han, N. Park, S. Kim, Simultaneously controllable doping sites and the activity of a W-N codoped TiO2 photocatalyst. ACS Catal. 6, 2745–2753 (2016). https://doi.org/10.1021/acscatal.6b00104

    Article  Google Scholar 

  39. J. Li, C. Liu, Y. Ye, J. Zhu, S. Wang, J. Guo, T.K. Sham, Tracking the local effect of fluorine self-doping in anodic TiO2 nanotubes. J. Phys. Chem. C. 120, 4623–4628 (2016). https://doi.org/10.1021/acs.jpcc.5b11445

    Article  Google Scholar 

  40. X. Deng, H. Zhang, R. Guo, Q. Ma, Y. Cui, X. Cheng, M. Xie, Q. Cheng, Effect of Ti3+ on enhancing photocatalytic and photoelectrochemical properties of TiO2 nanorods/nanosheets photoelectrode. Sep. Purif. Technol. 192, 329–339 (2018). https://doi.org/10.1016/j.seppur.2017.10.029

    Article  Google Scholar 

  41. J. Huo, Y. Hu, H. Jiang, C. Li, In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity. Nanoscale 6, 9078–9084 (2014). https://doi.org/10.1039/c4nr00972j

    Article  ADS  Google Scholar 

  42. H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, F. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J. Mater. Chem. A. 2, 8612–8616 (2014). https://doi.org/10.1039/c4ta00176a

    Article  Google Scholar 

  43. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011). https://doi.org/10.1021/nl201766h

    Article  ADS  Google Scholar 

  44. H. Li, J. Chen, Z. Xia, J. Xing, Microwave-assisted preparation of self-doped TiO2 nanotube arrays for enhanced photoelectrochemical water splitting. J. Mater. Chem. A. 3, 699–705 (2015). https://doi.org/10.1039/c4ta05021e

    Article  Google Scholar 

  45. S.A. Bakar, C. Ribeiro, Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: materials characterization and photocatalytic properties. Appl. Surf. Sci. 377, 121–133 (2016). https://doi.org/10.1016/j.apsusc.2016.03.137

    Article  ADS  Google Scholar 

  46. Z. Zhang, M.N. Hedhili, H. Zhu, P. Wang, Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys. Chem. Chem. Phys. 15, 15637–15644 (2013). https://doi.org/10.1039/c3cp52759j

    Article  Google Scholar 

  47. Q. Li, M. Zheng, B. Zhang, C. Zhu, F. Wang, J. Song, M. Zhong, L. Ma, W. Shen, InP nanopore arrays for photoelectrochemical hydrogen generation. Nanotechnology (2016). https://doi.org/10.1088/0957-4484/27/7/075704

    Article  Google Scholar 

  48. A.I. Kontos, V. Likodimos, T. Stergiopoulos, D.S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, P. Schmuki, Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater. 21, 662–672 (2009). https://doi.org/10.1021/cm802495p

    Article  Google Scholar 

  49. M. Shang, H. Hu, G. Lu, Y. Bi, Synergistic effects of SrTiO3 nanocubes and Ti3+ dual-doping for highly improved photoelectrochemical performance of TiO2 nanotube arrays under visible light. J. Mater. Chem. A. 4, 5849–5853 (2016). https://doi.org/10.1039/c6ta00033a

    Article  ADS  Google Scholar 

  50. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5, 104–111 (2009). https://doi.org/10.1002/smll.200800902

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Science and Technology, New Delhi for the establishment of LMN Laboratory through the Nano-Mission project. The authors are also indebted to NIT Srinagar for fellowship and valuable discussions of Mohsin, Jaffar, and Mateen besides also thanking Mr. Nayeem for investing his precious time in performing various characterizations of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshid Mir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, A., Shah, M.A. Fabrication of highly stable Titania photoanode with enhanced photocurrent density. Appl. Phys. A 128, 1105 (2022). https://doi.org/10.1007/s00339-022-06198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06198-1

Keywords

Navigation