Skip to main content
Log in

Effect of annealing temperature on the microstructural and optical properties of newly developed (Ag,Cu)2Zn(Sn,Ge)Se4 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, ACZTGSe thin films were fabricated by two-stage method to understand the effect of Ag and Ge incorporation in CZTSe system for the first time. For this purpose, sputtered (Ag-Cu-Zn-Sn-Ge)/evaporated (Se) precursor stacks were selenized at elevated temperatures (500–600 °C) for 3 min in rapid thermal processing system. The atomic ratios of the samples were adjusted to Ag/(Ag + Cu) = 0.10 and Ge/(Ge + Sn) = 0.05 and 0.30. The chemical composition of the films changed with the reaction temperature and by the degree of Ag–Ge co-doping. Moreover, Ge loss was more pronounced than Sn loss in the films due to the vapor pressure differences. Kesterite pure phase were acquired for CZTSe and ACZTGSe thin films after annealing treatment applied at 550 °C. Both XRD and Raman results revealed that Ag and Ge co-doped CZTSe thin films were successfully prepared. According to cross-sectional and surface images of the samples, it was deduced that incorporation of Ag and Ge into CZTSe lead to grain growth due to the liquid-assisted growth mechanism which was triggered by either Ag or Ge-based phases which acted as a fluxing agent. The band gap values shifted from 1.04 eV (CZTSe) to 1.14 eV (ACZTG0.23Se) for the thin films grown at 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. M. He, C. Yan, J. Li, M.P. Suryawanshi, J. Kim, M.A. Green, X. Hao, Kesterite solar cells: insights into current strategies and challenges. Adv. Sci. 8(9), 2004313 (2021)

    Article  Google Scholar 

  2. M. Olgar, B. Başol, M. Tomakin, A. Seyhan, E. Bacaksız, Influence of pre-annealing Cu-Sn on the structural properties of CZTSe thin films grown by a two-stage process. Mater Sci Semicond Process 88, 234–238 (2018)

    Article  Google Scholar 

  3. D.H. Son, S.H. Kim, S.Y. Kim, Y.-I. Kim, J.H. Sim, S.N. Park, J.K. Kang, Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device. J. Mater. Chem. A. 7(44), 25279–25289 (2019)

    Article  Google Scholar 

  4. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  ADS  Google Scholar 

  5. S.G. Haass, M. Diethelm, M. Werner, B. Bissig, Y.E. Romanyuk, A.N. Tiwari, 11.2% efficient solution processed kesterite solar cell with a low voltage deficit. Adv. Energy Mater. 5(18), 1500712 (2015)

    Article  Google Scholar 

  6. Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5(7), 1401372 (2015)

    Article  Google Scholar 

  7. J.J. Scragg, J.K. Larsen, M. Kumar, C. Persson, J. Sendler, S. Siebentritt, C. Platzer Björkman, Cu–Zn disorder and band gap fluctuations in Cu2ZnSn(S, Se)4: Theoretical and experimental investigations. Phys. Status Solidi B 253(2), 247–254 (2016)

    Article  ADS  Google Scholar 

  8. L.P. Mwakyusa, L. Leist, M. Rinke, A. Welle, U.W. Paetzold, B.S. Richards, M. Hetterich, Impact of silver incorporation at the back contact of Kesterite solar cells on structural and device properties. Thin Solid Films 709, 138223 (2020)

    Article  ADS  Google Scholar 

  9. T. Nagai, T. Shimamura, K. Tanigawa, Y. Iwamoto, H. Hamada, N. Ohta, S. Kim, H. Tampo, H. Shibata, K. Matsubara, Band Alignment of the CdS/Cu2Zn(Sn1–xGex)Se4 Heterointerface and Electronic Properties at the Cu2Zn (Sn1–xGex)Se4 Surface: x= 0, 0.2, and 0.4. ACS Appl. Mater. Interfaces. 11(4), 4637–4648 (2019)

    Article  Google Scholar 

  10. C.J. Hages, M.J. Koeper, R. Agrawal, S. Cells, Optoelectronic and material properties of nanocrystal-based CZTSe absorbers with Ag-alloying. Sol. Energy Mater. Sol. Cells 145, 342–348 (2016)

    Article  Google Scholar 

  11. T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, R. Haight, Photovoltaic materials and devices based on the alloyed kesterite absorber (AgxCu1–x)2ZnSnSe4. Adv. Energy Mater. 6(10), 1502468 (2016)

    Article  Google Scholar 

  12. S. Kim, J.-S. Park, S.N. Hood, A. Walsh, Lone-pair effect on carrier capture in Cu2ZnSnS4 solar cells. J. Mater. Chem. A 7(6), 2686–2693 (2019)

    Article  Google Scholar 

  13. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25(11), 1522–1539 (2013)

    Article  Google Scholar 

  14. Y.-C. Lin, Z.-Y. Su, Tin-Selenium Secondary Phase Etching of Cu2ZnSnSe4: A Selective Removal Route To Improve Solar Cell Efficiency. ACS Appl. Energy Mater. 1(12), 6725–6729 (2018)

    Article  Google Scholar 

  15. S. Giraldo, T. Thersleff, G. Larramona, M. Neuschitzer, P. Pistor, K. Leifer, A. Pérez-Rodríguez, C. Moisan, G. Dennler, E. Saucedo, Cu2ZnSnSe4 solar cells with 10.6% efficiency through innovative absorber engineering with Ge superficial nanolayer. Prog. Photovolt. Res. Appl. 24(10), 1359–1367 (2016)

    Article  Google Scholar 

  16. M. Ritzer, S. Schönherr, P. Schöppe, W. Wisniewski, S. Giraldo, G. Gurieva, A. Johannes, C.T. Plass, K. Ritter, G. Martínez-Criado, On the germanium incorporation in Cu2ZnSnSe4 kesterite solar cells boosting their efficiency. ACS Appl. Energy Mater. 3(1), 558–564 (2019)

    Article  Google Scholar 

  17. X. Zhao, X. Chang, D. Kou, W. Zhou, Z. Zhou, Q. Tian, S. Yuan, Y. Qi, S. Wu, Lithium-assisted synergistic engineering of charge transport both in GBs and GI for Ag-substituted Cu2ZnSn(S, Se)4 solar cells. J. Energy Chem. 50, 9–15 (2020)

    Article  Google Scholar 

  18. S.H. Hadke, S. Levcenko, S. Lie, C.J. Hages, J.A. Márquez, T. Unold, L.H. Wong, Synergistic Effects of Double Cation Substitution in Solution-Processed CZTS Solar Cells with over 10% Efficiency. Adv. Energy Mater. 8(32), 1802540 (2018)

    Article  Google Scholar 

  19. L. Qiu, J. Xu, X. Tian, Fabrication of Ag and Mn co-doped Cu2ZnSnS4 thin film. J. Nanomater. 9(11), 1520 (2019)

    Article  Google Scholar 

  20. M.A. Olgar, Y. Atasoy, B. Başol, M. Tomakin, G. Aygun, L. Ozyuzer, E. Bacaksız, Influence of copper composition and reaction temperature on the properties of CZTSe thin films. J. Alloys Compd. 682, 610–617 (2016)

    Article  Google Scholar 

  21. M. Olgar, A. Sarp, A. Seyhan, R. Zan, Impact of stacking order and annealing temperature on properties of CZTS thin films and solar cell performance. Renew. Energy 179, 1865–1874 (2021)

    Article  Google Scholar 

  22. D.-J. Xue, S.-C. Liu, C.-M. Dai, S. Chen, C. He, L. Zhao, J.-S. Hu, L.-J. Wan, GeSe thin-film solar cells fabricated by self-regulated rapid thermal sublimation. J. Am. Chem. Soc. 139(2), 958–965 (2017)

    Article  Google Scholar 

  23. C. Hirayama, Y. Ichikawa, A.M. DeRoo, Vapor pressures of tin selenide and tin telluride. J. Phys. Chem. 67(5), 1039–1042 (1963)

    Article  Google Scholar 

  24. T. Gershon, K. Sardashti, Y.S. Lee, O. Gunawan, S. Singh, D. Bishop, A.C. Kummel, R. Haight, Compositional effects in Ag2ZnSnSe4 thin films and photovoltaic devices. Acta Mater. 126, 383–388 (2017)

    Article  ADS  Google Scholar 

  25. S. Giraldo, M. Neuschitzer, T. Thersleff, S. López-Marino, Y. Sánchez, H. Xie, M. Colina, M. Placidi, P. Pistor, V. Izquierdo-Roca, Large efficiency improvement in Cu2ZnSnSe4 solar cells by introducing a superficial Ge nanolayer. Adv. Energy Mater. 5(21), 1501070 (2015)

    Article  Google Scholar 

  26. D.B. Khadka, S. Kim, J. Kim, Ge-alloyed CZTSe thin film solar cell using molecular precursor adopting spray pyrolysis approach. RSC Adv. 6(44), 37621–37627 (2016)

    Article  ADS  Google Scholar 

  27. A.R. West, Solid state chemistry and its applications, John Wiley & Sons2014.

  28. L. Vegard, The constitution of the mixed crystals and the filling of space of the atoms. Z Phys Chem. 5, 17–26 (1921)

    ADS  Google Scholar 

  29. S. Choi, H. Zhao, C. Persson, C.L. Perkins, A. Donohue, B. To, A.G. Norman, J. Li, I.L. Repins, Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV. J. Appl. Phys. 111(3), 033506 (2012)

    Article  ADS  Google Scholar 

  30. R. Juškėnas, G. Niaura, Z. Mockus, S. Kanapeckaitė, R. Giraitis, R. Kondrotas, A. Naujokaitis, G. Stalnionis, V. Pakštas, V. Karpavičienė, XRD studies of an electrochemically co-deposited Cu–Zn–Sn precursor and formation of a Cu2ZnSnSe4 absorber for thin-film solar cells. J. Alloys Compd. 655, 281–289 (2016)

    Article  Google Scholar 

  31. D.B. Khadka, J. Kim, Band gap engineering of alloyed Cu2ZnG xSn1–xQ4 (Q= S, Se) films for solar cell. J. Phys. Chem. C 119(4), 1706–1713 (2015)

    Article  Google Scholar 

  32. A.S. Chesman, J. Van Embden, E. Della Gaspera, N.W. Duffy, N.A. Webster, J.J. Jasieniak, Cu2ZnGeS4 nanocrystals from air-stable precursors for sintered thin film alloys. J. Mater. Chem. 26(19), 5482–5491 (2014)

    Article  Google Scholar 

  33. K. Gu, R. Hao, J. Guo, A. Aierken, X. Liu, F. Chang, Y. Li, G. Wei, B. Liu, L. Wang, Influence of Ag Layer Location on the Performance of Cu2ZnSnS4Thin Film Solar Cells. J. Electron. Mater. 49(3), 1819–1826 (2020)

    Article  ADS  Google Scholar 

  34. Z. Zhang, L. Yao, Y. Zhang, J. Ao, J. Bi, S. Gao, Q. Gao, M.J. Jeng, G. Sun, Z. Zhou, Modified back contact interface of CZTSe thin film solar cells: elimination of double layer distribution in absorber layer. Adv. Sci. 5(2), 1700645 (2018)

    Article  Google Scholar 

  35. Y. Atasoy, B. Başol, M. Olğar, M. Tomakin, Bacaksız, Cu (In, Ga)(Se, Te) 2 films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation. Thin Solid Films 649, 30–37 (2018)

    Article  ADS  Google Scholar 

  36. D. Wang, J. Wu, X. Liu, L. Wu, J. Ao, W. Liu, Y. Sun, Y. Zhang, Formation of the front-gradient bandgap in the Ag doped CZTSe thin films and solar cells. J. Energy Chem. 35, 188–196 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the Scientific and Technological Research Council of Turkey with the project number of 120F029. The author gratefully acknowledges to Karadeniz Technical University, Department of Physics for technical support and also thanks to Dr. Bülent M. BAŞOL for his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yavuz Atasoy.

Ethics declarations

Conflict of interest

The author declare that he has no competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atasoy, Y. Effect of annealing temperature on the microstructural and optical properties of newly developed (Ag,Cu)2Zn(Sn,Ge)Se4 thin films. Appl. Phys. A 128, 1030 (2022). https://doi.org/10.1007/s00339-022-06188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06188-3

Keywords

Navigation