Skip to main content
Log in

Impact of sulfurization parameters on properties of CZTS thin films grown using quaternary target

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, CZTS thin films were grown by annealing of sputtered films using quaternary single target employing various annealing parameters. The effects of the post-sulfurization treatment, reaction temperature (500, 525, 550 and 575 °C) and sulfurization time (60, 90, 120 and 150 s) on the properties of CZTS thin films were analyzed. The optimization of reaction temperature for 60 s dwell time was examined by annealing the precursor films with/without sulfur atmosphere. It was shown that annealing of the films under the sulfur atmosphere prevents Zn-loss in the samples for higher annealing temperatures (550 and 575 °C) and hindering the formation of secondary phases such as Cu2−xS, Cu2SnS3 (CTS). The FWHM values of the sulfurized samples revealed that the sulfurization temperature of 550 °C is preferable for the fabrication of CZTS samples. Further optimization was performed at 550 °C for various sulfurization times. It was seen that all the samples have Cu-poor and Zn-rich composition. The XRD pattern of CZTS samples displayed formation of kesterite CZTS phase but SnS2 phase formations were also observed for longer sulfurization time (> 120 s). It was also observed that the sulfurization time has more significant contribution on the crystallite size of the samples with respect to sulfurization temperature. The Raman spectra of the CZTS samples confirmed the formation of kesterite structures for all the films and appearance of secondary phase for films prepared using longer sulfurization time (> 120 s). All the samples displayed a dense and polycrystalline surface morphology, but the sulfurized sample for 120 s displayed more homogenous and prominent morphology. The room temperature PL measurements demonstrated a broad band which peaked at about 1.36–1.37 eV, which is very close to the band gap of kesterite CZTS structure. The electrical characterization of the samples showed that all the samples have p-type conductivity and the CZTS-S-550-120 sample has a more promising result considering both resistivity and carrier concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455–2460 (2009)

    Article  CAS  Google Scholar 

  2. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, IEEE J. Photovolt. 9, 1863–1867 (2019)

    Article  Google Scholar 

  3. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W. Ho-Baillie, Prog. Photovolt. 28 (2019)

  4. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510–519 (1961)

    Article  CAS  Google Scholar 

  5. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014)

    Article  CAS  Google Scholar 

  6. N.J. Choudhari, Y. Raviprakash, F. Bellarmine, M.S.R. Rao, R. Pinto, Sol. Energy 201, 348–361 (2020)

    Article  CAS  Google Scholar 

  7. X. Fontane, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, Appl. Phys. Lett. 98, 181905 (2011)

    Article  CAS  Google Scholar 

  8. I.S. Babichuk, M.O. Semenenko, S. Golovynskyi, R. Caballero, O.I. Datsenko, I.V. Babichuk, J. Li, G.W. Xu, R. Qiu, C. Huang, R. Hu, I. Golovynska, V. Ganus, B.K. Li, J.L. Qu, M. Leon, Sol. Energy Mater. Sol. Cells 200, 109915 (2019)

    Article  CAS  Google Scholar 

  9. M.A. Olgar, Y. Atasoy, B.M. Basol, M. Tomakin, G. Aygun, L. Ozyuzer, E. Bacaksiz, J. Alloy. Compd. 682, 610–617 (2016)

    Article  CAS  Google Scholar 

  10. G.A. Ren, D.M. Zhuang, M. Zhao, Y.W. Wei, Y.X. Wu, X.C. Li, X.Y. Lyu, C. Wang, L. Hu, J.Q. Wei, Q.M. Gong, Vacuum 173, 109121 (2020)

    Article  CAS  Google Scholar 

  11. M.A. Olgar, J. Klaer, R. Mainz, S. Levcenco, J. Just, E. Bacaksiz, T. Unold, Thin Solid Films 615, 402–408 (2016)

    Article  CAS  Google Scholar 

  12. M. Dimitrievska, A. Fairbrother, A. Perez-Rodriguez, E. Saucedo, V. Izquierdo-Roca, Acta Mater. 70, 272–280 (2014)

    Article  CAS  Google Scholar 

  13. E.M. Mkawi, Y. Al-Hadeethi, E. Shalaan, E. Bekyarova, J. Mater. Sci. 29, 20476–20484 (2018)

    CAS  Google Scholar 

  14. Z. Zakaria, P. Chelvanathan, M.J. Rashid, M. Akhtaruzzaman, M.M. Alam, Z.A. Al-Othman, A. Alamoud, K. Sopian, N. Amin, Jpn. J. Appl. Phys. 54, 08KC18 (2015)

    Article  CAS  Google Scholar 

  15. I.S. Babichuk, M.O. Semenenko, R. Caballero, O.I. Datsenko, S. Golovynskyi, R. Qiu, C. Huang, R. Hu, I.V. Babichuk, R.R. Ziniuk, M. Stetsenko, O.A. Kapush, J. Yang, B.K. Li, J.L. Qu, M. Leon, Sol. Energy 205, 154–160 (2020)

    Article  CAS  Google Scholar 

  16. M.A. Olgar, M. Tomakin, T. Kucukomeroglu, E. Bacaksiz, Mater. Res. Express 6, 056401 (2019)

    Article  CAS  Google Scholar 

  17. A.V. Moholkar, S.S. Shinde, G.L. Agawane, S.H. Jo, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloy. Compd. 544, 145–151 (2012)

    Article  CAS  Google Scholar 

  18. K.V. Gunavathy, K. Tamilarasan, C. Rangasami, A.M.S. Arulanantham, Thin Solid Films 697, 137841 (2020)

    Article  CAS  Google Scholar 

  19. H. Ahmoum, P. Chelvanathan, M.S. Su’ait, M. Boughrara, G. Li, A.H.A. Al-Waeli, K. Sopian, M. Kerouad, N. Amin, Superlattice Microstruct. 140, 106452 (2020)

    Article  CAS  Google Scholar 

  20. M.A. Olgar, Superlattice Microstruct. 126, 32–41 (2019)

    Article  CAS  Google Scholar 

  21. Y.P. Lin, T.E. Hsieh, Y.C. Chen, K.P. Huang, Sol. Energy Mater. Sol. Cells 162, 55–61 (2017)

    Article  CAS  Google Scholar 

  22. Y.P. Lin, Y.F. Chi, T.E. Hsieh, Y.C. Chen, K.P. Huang, J. Alloy. Compd. 654, 498–508 (2016)

    Article  CAS  Google Scholar 

  23. J. He, L. Sun, Y. Chen, J.C. Jiang, P.X. Yang, J.H. Chu, Rsc Adv. 4, 43080–43086 (2014)

    Article  CAS  Google Scholar 

  24. J.S. Wang, S. Li, J.J. Cai, Y.P. Ren, G.W. Qin, Fabrication of Cu2ZnSnS4 Thin Films by Sputtering from a Single Quaternary Chalcogenide Compound, Materials Science Forum, vol 787, (Trans Tech Publ, 2014), pp. 31–34

  25. J.C. Jiang, L.Q. Zhang, W. Wang, R.J. Hong, Ceram. Int. 44, 11597–11602 (2018)

    Article  CAS  Google Scholar 

  26. S.A. Nadi, P. Chelvanathan, Z. Zakaria, M.M. Alam, Z.A. Alothman, K. Sopian, N. Amin, Int. J. Photoenergy (2014)

  27. T. Ferdaous, P. Chelvanathan, S.A. Shahahmadi, M.M.I. Sapeli, K. Sopian, N. Amin, Mater. Lett. 221, 201–205 (2018)

    Article  CAS  Google Scholar 

  28. A. Tumbul, F. Aslan, A. Göktaş, I. Mutlu, J. Alloy. Compd. 781, 280–288 (2019)

    Article  CAS  Google Scholar 

  29. M.A. Olgar, J. Klaer, R. Mainz, L. Ozyuzer, T. Unold, Thin Solid Films 628, 1–6 (2017)

    Article  CAS  Google Scholar 

  30. Y. Ren, J.J. Scragg, C. Frisk, J.K. Larsen, S.Y. Li, C. Platzer-Björkman, Physica Status Solidi A 212, 2889–2896 (2015)

    Article  CAS  Google Scholar 

  31. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Adv. Mater. 25, 1522–1539 (2013)

    Article  CAS  Google Scholar 

  32. D.R. Lide, Handbook of Chemistry and Physics (CRC Press, New York, 2004)

    Google Scholar 

  33. M.A. Olgar, E. Bacaksiz, M. Tomakin, T. Kucukomeroglu, B.M. Basol, Mater. Sci. Semicond. Process. 90, 101–106 (2019)

    Article  CAS  Google Scholar 

  34. D.M. Berg, M. Arasimowicz, R. Djemour, L. Gutay, S. Siebentritt, S. Schorr, X. Fontane, V. Izquierdo-Roca, A. Perez-Rodriguez, P.J. Dale, Thin Solid Films 569, 113–123 (2014)

    Article  CAS  Google Scholar 

  35. A.J. Cheng, M. Manno, A. Khare, C. Leighton, S.A. Campbell, E.S. Aydil, J. Vacuum Sci. Technol. A 29, 051203 (2011)

    Article  CAS  Google Scholar 

  36. D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, V. Sathe, J. Mater. Sci. 25, 3687–3694 (2014)

    CAS  Google Scholar 

  37. M. Buffiere, G. Brammertz, S. Sahayaraj, M. Batuk, S. Khelifi, D. Mangin, A.A. El Mel, L. Arzel, J. Hadermann, M. Meuris, J. Poortmans, ACS Appl. Mater. Interfaces 7, 14690–14698 (2015)

    Article  CAS  Google Scholar 

  38. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  39. S. Khalate, R. Kate, J. Kim, S. Pawar, R. Deokate, Superlattice Microstruct. 103, 335–342 (2017)

    Article  CAS  Google Scholar 

  40. J.J. Scragg, T. Kubart, J.T. Watjen, T. Ericson, M.K. Linnarsson, C. Platzer-Bjorkman, Chem. Mater. 25, 3162–3171 (2013)

    Article  CAS  Google Scholar 

  41. M. He, A.C. Lokhande, I.Y. Kim, U.V. Ghorpade, M.P. Suryawanshi, J.H. Kim, J. Alloy. Compd. 701, 901–908 (2017)

    Article  CAS  Google Scholar 

  42. N. Akcay, T. Ataser, Y. Ozen, S. Ozcelik, Thin Solid Films 704, 138028 (2020)

    Article  CAS  Google Scholar 

  43. S. Levcenko, V.E. Tezlevan, E. Arushanov, S. Schorr, T. Unold, Phys. Rev. B 86, 045206 (2012)

    Article  CAS  Google Scholar 

  44. X.Z. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M.C. Lux-Steiner, A. Ennaoui, Thin Solid Films 535, 10–13 (2013)

    Article  CAS  Google Scholar 

  45. P. Prabeesh, V. Sajeesh, I.P. Selvam, M.D. Bharati, G.M. Rao, S. Potty, Sol. Energy 207, 419–427 (2020)

    Article  CAS  Google Scholar 

  46. M. Olgar, A. Seyhan, A. Sarp, R. Zan, Superlattice Microstruct. 146, 106669 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with the Project Number of 118F530. We gratefully acknowledge the help of M. Tomakin for electrical measurements and G. Karaağaç Zan for language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Olgar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olgar, M.A., Seyhan, A., Sarp, A.O. et al. Impact of sulfurization parameters on properties of CZTS thin films grown using quaternary target. J Mater Sci: Mater Electron 31, 20620–20631 (2020). https://doi.org/10.1007/s10854-020-04582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04582-2

Navigation