Skip to main content
Log in

The structural, optical, mechanical, and radiation-shielding features of transparent borate glasses containing bismuth and lead cations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A glass formulation (100-x) [75% B2O3–25%Bi2O3] – xPbCl2; x = 0, 2.5, 7 and 11 mol. % was obtained via melt-quenching steps. The glass internal structure was investigated by infrared spectroscopy (FTIR). The elasticity moduli were investigated using well-known models. The dependence of boron–boron distance (dB-B), molar volume (Vm), bandgap (EOpt), and index of refraction (\(n\)) on PbCl2 content also was investigated. The parameters dB–B, Vm, and n show an increasing behavior, while EOpt shows a slight decrement behavior with PbCl2 content. The elasticity moduli show increasing behavior with PbCl2 content increment. Comparing bulk modulus (\(B\)) to Young modulus (\(E\)), the values of \(B\) are quite lower. This manifests that the present glasses can withstand stress in one direction better than in all directions. Moreover, the \(E\) is greater than \(S\). This shows that the present glasses can tolerate longitudinal stress more than shear stress. A proposed method to obtain EOpt from the extinction coefficient is examined. The results obtained by this method show an excellent agreement with those obtained by Tauc’s method. Moreover, the effect of the partial replacement of Bi2O3 with PbCl2 on the gamma-ray shielding properties was studied using the Monte Carlo simulation code MCNP. The obtained results depict a decrease in the linear attenuation coefficient values from 0.326 to 0.300 cm−1 with raising the partial replacement of Bi2O3 by PbCl2. Besides, the half-value thickness and transmission factor values increased with raising the partial substitution of Bi2O3 by PbCl2. The fast neutron effective removal cross-section was calculated for the fabricated glasses where the results show a slight reduction in the ∑R values with raising the incrementation of PbCl2 content in the fabricated glass samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All the data have been reported in the manuscript. The authors declare that the data supporting the findings of this study are available within the article. The raw data that support the findings are available on request from the corresponding author.

References

  1. W.C. Wang, B. Zhou, S.H. Xu, Z.M. Yang, Q.Y. Zhang, Recent advances in soft optical glass fiber and fiber lasers. Prog. Mater. Sci. 101, 90–171 (2019)

    Google Scholar 

  2. A.M. Abdelghany, F.H. ElBatal, H.A. ElBatal, F.M. EzzElDin, Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation-a comparative study. J. Mol. Struct. 1074, 503–510 (2014)

    ADS  Google Scholar 

  3. M.S. Sadeq, H.Y. Morshidy, Effect of samarium oxide on structural, optical and electrical properties of some alumino-borate glasses with constant copper chloride. J. Rare Earths 38, 770–775 (2020)

    Google Scholar 

  4. N.B. Pimentel, V.R. Mastelaro, J.C. M’Peko, S.W. Martin, S.S. Rojas, J.E. De Souza, Structural and electrical characterization of glasses in the Li2O–CaO–B2O3 system. J. Non-Cryst. Solids 499, 272–277 (2018)

    ADS  Google Scholar 

  5. N. Laorodphan, P. Kidkhunthod, J. Khajonrit, A. Montreeuppathum, N. Chanlek, S. Pinitsoontorn, S. Maensiri, Effect of B2O3 content on structure-function of vanadium-lithium-borate glasses probed by synchrotron-based XAS and vibrating sample magnetrometry technique. J. Non-Cryst. Solids 497, 56–62 (2018)

    ADS  Google Scholar 

  6. A.C. Wright, N.M. Vedishcheva, Superstructural unit species in vitreous and crystalline alkali, alkaline earth and related borates, Physics and Chemistry of Glasses: Europ. J. Glass Sci. Tech. B 54(4), 147–156 (2013)

    Google Scholar 

  7. Y. Xue, J. Cao, Z. Zhang, L. Wang, S. Xu, M. Peng, Manipulating Bi NIR emission by adjusting optical basicity, boron and aluminum coordination in borate laser glasses. J. Am. Ceram. Society 101, 624–633 (2018)

    Google Scholar 

  8. H.Y. Morshidy, M.S. Sadeq, A. Raouf Mohamed, M.M. EL-Okr, The role of CuCl2 in tuning the physical, structural and optical properties of some Al2O3–B2O3 glasses. J. Non-Cryst. Solids 528, 119749–119754 (2020)

    Google Scholar 

  9. M. Shapaan, F.M. Ebrahim, Structural and electric–dielectric properties of B2O3–Bi2O3–Fe2O3 oxide glasses. Physica (B) 405, 3217 (2010)

    ADS  Google Scholar 

  10. S.M. Salem, S.F. Mansour, I.I. Bashter, M.S. Sadeq, A.G. Mostafa, Effect of mixed heavy metal cations on the A.C. conductivity and dielectric properties of some boro-silicate glasses. Ceram. Int. 44, 14363–14369 (2018)

    Google Scholar 

  11. S.M. Abo-Naf, R.L. Elwan, M.A. Marzouk, Structure–property correlations in the SiO2–PbO–Bi2O3 glasses. J Mater Sci: Mater Electron 23, 1022–1030 (2012)

    Google Scholar 

  12. A. Ibrahim, M.A. Farag, M.S. Sadeq, Towards highly transparent tungsten zinc sodium borate glasses for radiation shielding purposes, Ceram (Int. In Press, 2022)

    Google Scholar 

  13. B. Aktas, A. Acikgoz, D. Yilmaz, S. Yalcin, K. Dogru, N. Yorulmaz, The role of TeO2 insertion on the radiation shielding, structural and physical properties of borosilicate glasses. J. Nucl. Mater. 563, 153619 (2022)

    Google Scholar 

  14. M.I. Sayyed, T.A. Elmosalami, M.A.A. Bdo, M.S. Sadeq, Optical and radiation shielding features of NiO-CdO-BaO borosilicate glasses. Phys. Scr. 97, 085802 (2022)

    ADS  Google Scholar 

  15. M.I. Sayyed, M.A. Abdo, H.E. Ali, M.S. Sadeq, Impact of Y2O3 on the structural, optical, radiation shielding, and ligand field parameters of transparent borate glass containing constant CrO3 and high Na2O contents. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.04.008

    Article  Google Scholar 

  16. M.I. Sayyed, O.I. Olarinoye, M. Elsafi, Assessment of gamma-radiation attenuation characteristics of Bi2O3–B2O3–SiO2–Na2O glasses using Geant4 simulation code. Eur. Phys. J. Plus 136(5), 535 (2021)

    Google Scholar 

  17. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses. J. Non-Cryst. Solids 499, 75–85 (2018)

    ADS  Google Scholar 

  18. D.K. Gaikwad, M.I. Sayyed, S.S. Obaid, S.A. Issa, P.P. Pawar, Gamma ray shielding properties of TeO2-ZnF2-As2O3-Sm2O3 glasses. J. Alloy. Compd. 765, 451–458 (2018)

    Google Scholar 

  19. S.A. Issa, Y.B. Saddeek, M.I. Sayyed, H.O. Tekin, O. Kilicoglu, Radiation shielding features using MCNPX code and mechanical properties of the PbONa2OB2O3CaOAl2O3SiO2 glass systems. Compos. B Eng. 167, 231–240 (2019)

    Google Scholar 

  20. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20–x) CdO based on nanometal oxides. J. Non-Cryst. Solids 528, 119754 (2020)

    Google Scholar 

  21. M.S. Sadeq, I.I. Bashter, S.M. Salem, S.F. Mansour, H.A. Saudi, M.I. Sayyed, A.G. Mostafa, Enhancing the gamma-ray attenuation parameters of mixed bismuth/ barium borosilicate glasses: using an experimental method, Geant4 code and XCOM software. Prog. Nucl. Energy 145, 104124 (2022)

    Google Scholar 

  22. M.I. Sayyed, A. Ibrahim, M.A. Abdo, M.S. Sadeq, The combination of high optical transparency and radiation shielding effectiveness of zinc sodium borate glasses by tungsten oxide additions. J. Alloy. Compd. 904, 164037 (2022)

    Google Scholar 

  23. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos Controlled Publication. LA-CP-03–0245. 2003.

  24. N. Al-Harbi, M.I. Sayyed, Y. Al-Hadeethi, K. Ashok, M. Elsafi, K.A. Mahmoud, M.U. Khandaker, D.A. Bradley, A novel CaO–K2O–Na2O–P2O5 glass systems for radiation shielding applications. Radiat. Phys. Chem. 188, 109645 (2021)

    Google Scholar 

  25. M.I. Sayyed, M.H. Zaid, E. Mohd, M. Nuraidayanie, K. Amin, H.A. Sidek, L. Aziz, M.K.A. Eloic, M.M. AlShammari, The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses. J. Mater. Res. Technol. 9(4), 8429–84381 (2020)

    Google Scholar 

  26. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: Physical, structural, optical, elastic, and radiation-shielding properties. Radiat. Phys. Chem. 188, 109617 (2021)

    Google Scholar 

  27. E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics. J. Phys. Chem. Solids 164, 110627 (2022)

    Google Scholar 

  28. R. Kaur, S. Singh, O.P. Pandey, UV–vis spectroscopic studies of gamma irradiated lead sodium borosilicate glasses. J. Mol. Struct. 1060, 251–255 (2014)

    ADS  Google Scholar 

  29. A. El Abd, G. Mesbah, N.M.A. Mohammed, A. Ellithi, A simple method for determining the effective removal cross section for fast neutrons. J. Radiat. Nucl Appl. 2, 53–85 (2016)

    Google Scholar 

  30. T.Y. Lim, H. Wagiran, R. Hussin, S. Hashim, M.A. Saeed, Physical and optical properties of dysprosium ion doped strontium borate glasses. Physica B 451, 63–67 (2014)

    ADS  Google Scholar 

  31. G. Jagannath, B. Eraiah, K. NagaKrishnakanth, S. Venugopal Rao, Linear and nonlinear optical properties of gold nanoparticles doped borate glasses. J. Non- Cryst. Solids 482, 160–169 (2018)

    ADS  Google Scholar 

  32. P.P. Pawar, S.R. Munishwar, D.D. Ramteke, R.S. Gedam, Physical, structural, thermal and spectroscopic investigation of Sm2O3. J. Lumin. 208, 443–452 (2019)

    Google Scholar 

  33. P.P. Pawar, S.R. Munishwar, S. Gautam, R.S. Gedam, Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright WLED. J. Lumin. 183, 79–88 (2017)

    Google Scholar 

  34. P.P. Pawar, S.R. Munishwar, R.S. Gedam, Eu2O3 doped bright orange-red luminescent lithium alumino-borate glasses for solid state lighting. J. Lumin. 200, 216–222 (2018)

    Google Scholar 

  35. V. Thakur, H.S. Kushwaha, A. Singh, R. Vaish, R. Punia, L. Singh, A study on the structural and hotocatalytic degradation of ciprofloxacine using (70B2O3–29Bi2O3–1Dy2O3)–x(BaO–TiO2) glass ceramics. J. Non-Cryst. Solids 428, 197–203 (2015)

    ADS  Google Scholar 

  36. A. Ichoja, S. Hashim, S.K. Ghoshal, I.H. Hashim, R.S. Omar, Physical, structural and optical studies on magnesium borate glasses doped with dysprosium ion. J. Rare Earths 36, 1264–1271 (2018)

    Google Scholar 

  37. P. Goyal, Y.K. Sharmaa, S. Pal, U.C. Bind, S.C. Huang, S.L. Chung, Structural, optical and physical analysis of B2O3–SiO2–Na2O–PbO–ZnO glass with Sm3+ ions for reddish– orange laser emission. J. Lumin. 192, 1227–1234 (2017)

    Google Scholar 

  38. A.M. Abdel-Ghany, A.S. Abu-Khadra, M.S. Sadeq, Influence of Fe cations on the structural and optical properties of alkali alkaline borate glasses. J. Non-Cryst. Solids 548, 120320 (2020)

    Google Scholar 

  39. A.M. Abdel-Ghany, M.S.S. Saad, I.I. Bashter, T.Z. Amer, S.M. Salem, A.G. Mostafa, Studies on some inorganic oxide glasses used as gamma-ray shields and for radio-active waste encapsulation. Nat. and Sci. 12, 12 (2014)

    Google Scholar 

  40. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Oxford University Press, Oxford, 1977)

    Google Scholar 

  41. S.B. Mallur, T. Czarnecki, A. Adhikari, P.K. Babu, Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses. Mater. Res. Bull. 68, 27–34 (2015)

    Google Scholar 

  42. I.S. Reshetnikova, V.N. Shapovalov, Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses. Optica Spectrosc. 75, 749–752 (1993)

    ADS  Google Scholar 

  43. A.H. Kahn, A.J. Leyendecker, Electronic energy bands in strontium titanate. Phys. Rev. A 135, 1321–1325 (1964)

    ADS  Google Scholar 

  44. M.A. Hassan, F. Ahmad, Z.M. Abd El-Fattah, Novel identification of ultraviolet/ visible Cr6+/Cr3+ optical transitions in borate glasses. J. Alloy. Comp. 750, 320–327 (2018)

    Google Scholar 

  45. D.S. Carr, Ullmann's Encyclopedia of Industrial Chemistry, 7 (2008)

  46. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736–1740 (1996)

    ADS  Google Scholar 

  47. P.B. Clapham, Preparation and properties of sputtered bismuth oxide films. Br. J. Appl. Phys. 18, 363–366 (1967)

    ADS  Google Scholar 

  48. M.S. Sadeq, H.Y. Morshidy, Effect of mixed rare-earth ions on the structural and optical properties of some borate glasses. Ceram. Int. 45, 18327–18332 (2019)

    Google Scholar 

  49. M.S. Sadeq, M.A. Abdo, Effect of iron oxide on the structural and optical properties of alumino-borate glasses. Ceram Int. 47, 2043–2049 (2021)

    Google Scholar 

  50. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s modulus of glass. J. Non-Cryst. Solids 12, 35–45 (1973)

    ADS  Google Scholar 

  51. S. Inaba, S. Fujino, K. Morinaga, Young’s modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82, 3501–3507 (2004)

    Google Scholar 

  52. A.K. Swarnakar, A. Stamboulis, D. Holland, O. Van der Biest, Improved prediction of Young’s modulus of fluorine-containing glasses using MAS-NMR structural data. J. Am. Ceram. Soc. 96, 1271–1277 (2013)

    Google Scholar 

  53. A. Makishima, J.D. Mackenzie, Journal of non-crystalline solids 22 (1976) 305-313 © North-Holland publishing company calculation of thermal expansion coefficient of glasses. J. Non-Cryst. Solids 22(1976), 305–313 (1976)

    ADS  Google Scholar 

  54. T. Rouxel, Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 90, 3019–3039 (2007)

    Google Scholar 

  55. H.D. Subhashini, N.K. Shashikala, Udayashankar, Influence of Fe3+ ions on optical, structural, thermal and mechanical properties of Li2O–Na2O–K2O–ZnO–B2O3 based glass system. Ceram. Int. 46, 5213–5222 (2020)

    Google Scholar 

  56. G. Kilic, F.I. Agawany, B.O. Ilik, K.A. Mahmoud, E. Ilik, Y.S.B. Rammah, Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: Fabrication, physical, structural characterization, and radiation shielding efficacy. Opt. Mater. 112, 110757 (2021)

    Google Scholar 

  57. A.S. Abouhaswa, M.I. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K.A. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program. J. Non-Crystal. Solids. 543, 120134 (2020)

    Google Scholar 

  58. M.I. Sayyed, K.A. Mahmoud, S. Islam, O.L. Tashlykov, E. Lacomme, K.M. Kaky, Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregate. Radiat. Phys. Chem. 174, 108925 (2020)

    Google Scholar 

  59. A. Kumar, M.I. Anisha Jain, Fa.L. Sayyed, K.A. Mahmoud, J. Nebhen, M.U. Khandaker, M.R.I. Faruque, Tailoring bismuth borate glasses by incorporating PbO/GeO2 for protection against nuclear radiation. Sci. Rep. 11, 7784 (2021). https://doi.org/10.1038/s41598-021-87256-1

    Article  ADS  Google Scholar 

  60. M.I. Yas Al-Hadeethi, A.Z. Sayyed, M.A. Barasheed, M. Elsafi, Fabrication of lead free borate glasses modified by bismuth oxide for gamma ray protection applications. Materials 15, 789 (2022). https://doi.org/10.3390/ma15030789

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MSS: analysis, writing—original draft and editing, writing—review and editing, project administration, KAM: analysis, writing—original draft and editing, MIS: data curation, analysis, writing—review and editing, AMA-G: methodology, data curation, writing—original draft.

Corresponding authors

Correspondence to M. S. Sadeq or M. I. Sayyed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeq, M.S., Mahmoud, K.A., Sayyed, M.I. et al. The structural, optical, mechanical, and radiation-shielding features of transparent borate glasses containing bismuth and lead cations. Appl. Phys. A 128, 1049 (2022). https://doi.org/10.1007/s00339-022-06184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06184-7

Keywords

Navigation