Skip to main content
Log in

Effect of sintering temperature on structural, dielectric and magnetic properties of CoFe1.5Ni0.5O4 prepared by solid-state reaction method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Samples of CoFe1.5Ni0.5O4 were synthesized using the solid-state reaction method. As depicted from XRD plots, peak intensities increases as the sintering temperature goes from 1200 to 1300 °C signifying that the crystallinity has improved. Both the samples possess a spinel structure with space group Fd-3 m. The Rietveld refinement of the samples was done using Full-Prof software to calculate the cationic distribution and other structural parameters. The cation distribution for CoFe1.5Ni0.5O4 sintered at 1200 and 1300 °C were found to be (Co0.25Fe0.75) [Co0.75Fe1.23Ni0.03]O4 and (Co0.25Fe0.75) [Co0.76Fe1.21Ni0.03]O4 respectively. Also the value of lattice constants for the sample sintered at 1300 °C was found to be 8.355 Å which is greater than the lattice constant (8.342 Å) of the sample sintered at 1200 °C. The temperature-dependent dielectric characteristics of the samples were investigated in this work. This study revealed that as the sintering temperature rises, έ and tan δ decrease. Magnetic properties such as coercivity, remanence and saturation magnetizations were reported to decrease as the sintering temperature increased. The respective values of coercivity (Hc), remanence (Mr) and saturation magnetization (Ms) were 87.06 and 71.85 Oe, 9.61 and 7.98 and 63.90 and 56.90 emu/g for the samples sintered at 1200 and 1300 °C. Using low dielectric constant materials, low heat dissipation and parasitic capacitance are obtained, allowing these materials to be utilized in faster switching speeds in devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117, 10121–10211 (2017)

    Google Scholar 

  2. A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuat. B Chem. 222, 95–105 (2016)

    Google Scholar 

  3. T. Tatarchuk, M. Bououdina, J. J. Vijaya, L. J. Kennedy, Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In Proc. international conference on nanotechnology and nanomaterials (Springer Nature, Switzerland, 2016), p.305–325.

  4. S. Dou, Review and prospects of Mn-based spinel compounds as cathode materials for lithium-ion batteries. Ionics 21, 3001–3030 (2015)

    Google Scholar 

  5. S.D. Bhame, P.A. Joy, J. Appl. Phys. 100, 113911 (2006)

    Google Scholar 

  6. K. Kamala Bharathi, C.V. Ramana, J. Mater. Res. 26, 584–591 (2011)

    Google Scholar 

  7. B. Zhou, Y.-W. Zhang, C.-S. Liao, C.-H. Yan, L.-Y. Chen, S.-Y. Wang, J. Magn. Magn. Mater. 280, 327–333 (2004)

    Google Scholar 

  8. S. Wells, C.V. Ramana, Ceram. Int. 39, 9549–9556 (2013)

    Google Scholar 

  9. A. Rafferty, T. Prescott, D. Brabazon, Sintering behavior of cobalt ferrite ceramic. Ceram. Int. 34, 15–21 (2008)

    Google Scholar 

  10. R.C. Che, C.Y. Zhi, C.Y. Liang, X.G. Zhou, Fabrication and microwave absorpotion of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 88, 033105-1–033105-3 (2006)

    Google Scholar 

  11. H. Yüngevis, E. Ozel, Effect of milling process on the properties of CoFe2O4. Ceram. Int. 39, 5503–5511 (2013)

    Google Scholar 

  12. M. Sugimoto, The past, present and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999)

    Google Scholar 

  13. K. Kamala Bharathi, G. Markendeyulu, C.V. Ramana, Structural, magnetic, electrical and magnetoelectric properties of Sm- and Hosubstituted nickel ferrites. J. Phys. Chem. C. 115, 554–560 (2011)

    Google Scholar 

  14. K. Kamala Bharathi, M. Noor-A-Alam, R.S. Vemuri, C.V. Ramana, Correlation between microstructure, electrical and optical properties of nanocrystalline NiFe1.925Dy0.075O4 thin films. RSC Adv. 2, 941–948 (2012)

    Google Scholar 

  15. K. Kamala Bharathi, G. Markendeyulu, C.V. Ramana, Enhanced dielectric property of Ni ferrite by Sm and Ho substitution. Electrochem. Solid-State Lett. 13, G98–G102 (2010)

    Google Scholar 

  16. Z. Gu, X. Xiang, G. Fan, F. Li, Facile synthesis and characterization of cobalt ferrite nanocrystal via a simple reduction–oxidation route. J. Phys. Chem. C 112, 18459–18466 (2008)

    Google Scholar 

  17. U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Temperature dependent magnetic properties of CoFe2O4/CTAB nanocomposite synthesized by sol–gel auto-combustion method. Ceram. Int. 39, 6551–6558 (2013)

    Google Scholar 

  18. R. Peelamedu, C. Grimes, D. Agrawal, R. Roy, P. Yadoji, Ultralow dielectric constant nickel–zinc ferrites using microwave sintering. J. Mater. Res. 18, 2292–2295 (2003)

    Google Scholar 

  19. S. Phanichphant, Cellulose-precursor synthesis of nanocrystalline Co0. 5Cu0. 5Fe2O4 spinel ferrites. Mater. Res. Bull. 47, 473–477 (2012)

    Google Scholar 

  20. G.J. Long, F. Grandjean, Mossbauer spectroscopy applied to inorganic chemistry, vol. 3 (Springer Science & Business Media, Heidelberg, 2013)

    Google Scholar 

  21. A. Belous et al., High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89, 3441–3445 (2006)

    Google Scholar 

  22. T.J. Coutts, X. Wu, W.P. Mulligan, J.M. Webb, High-performance, transparent conducting oxides based on cadmium stannate. J. Electron. Mater. 25, 935–943 (1996)

    Google Scholar 

  23. N. Ueda et al., New oxide phase with wide band gap and high electroconductivity, MgIn2O4. Appl. Phys. Lett. 61, 1954–1955 (1992)

    Google Scholar 

  24. M. Labeau, V. Reboux, D. Dhahri, J.C. Joubert, New mixed oxides as thin film transparent electrodes: spinel phase CdIn2O4. Thin Sol. Films 136, 257–262 (1986)

    Google Scholar 

  25. A.J. Nozik, Optical and electrical properties of Cd2 Sn O4: a defect semiconductor. Phys. Rev. B 6, 453 (1972)

    Google Scholar 

  26. A.R. Molla et al., Microstructure, mechanical, thermal, EPR and optical properties of MgAl2O4: Cr3. spinel glass-ceramic nanocomposites. J. Alloy. Compd. 583, 498–509 (2014)

    Google Scholar 

  27. M. AsifKhan et al., Cleaved cavity optically pumped InGaN-GaN laser grown on spinel substrates. Appl. Phys. Lett. 69, 2418–2420 (1996)

    Google Scholar 

  28. M.S. Whittingham, Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004)

    Google Scholar 

  29. C. Wei et al., Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X= Mn Co, Ni, Fe). Chem. Mater. 28, 4129–4133 (2016)

    Google Scholar 

  30. Y. Slimani et al., Calcination efect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-01243-x

    Article  Google Scholar 

  31. Y. Slimani et al., Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Result. Phys. (2020). https://doi.org/10.1016/j.rinp.2020.103061

    Article  Google Scholar 

  32. A.A. Munirah et al., Effect of Nb3+ substitution on the structural, magnetic, and optical properties of Co0.5Ni0.5Fe2O4 nanoparticles. Nanomaterials 9, 430 (2019). https://doi.org/10.3390/nano9030430

    Article  Google Scholar 

  33. M.A. Almessiere, Impact of La3+ and Y3+ ion substitutions on structural, magnetic and microwave properties of Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites synthesized via sonochemical route. RSC Adv. 9, 30671 (2019)

    Google Scholar 

  34. S. Jauhar, J. Kaur, A. Goyal, S. Singhal, Tuning the properties of cobalt ferrite: a road towards diverse applications. R. Soc. Chem. Adv. (2016). https://doi.org/10.1039/C6RA21224G

    Article  Google Scholar 

  35. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: effect of nickel concentration. AIP Adv. 5, 097166 (2015). https://doi.org/10.1063/1.4931908

    Article  Google Scholar 

  36. G.R. Gajula, L.R. Buddiga, K.N. Chidambara Kumar, N. Vattikunta, M. Dasari, Effect of Gd and Nb on dielectric and magnetic transition temperature of BaTiO3- Li0.5Fe2.5O4 composites. Phys. B 560, 1–5 (2019). https://doi.org/10.1016/j.physb.2019.02.035

    Article  Google Scholar 

  37. G.R. Gajula, L.R. Buddiga, K.N. Chidambara Kumar, N. Vattikunta, M. Dasari, Dielectric, magnetic and magneto-electric studies of lithium ferrite synthesized by solid state technique for wave propagation application. J. Sci. (2018). https://doi.org/10.1016/j.jsamd.2018.04.007

    Article  Google Scholar 

  38. G.R. Gajula et al., Structural, ferroelectric, dielectric, impedance and magnetic properties of Gd and Nb doped barium titanate-lithium ferrite solid solutions. J. Magn. Magn. Mater. 494, 165822 (2020). https://doi.org/10.1016/j.jmmm.2019.165822

    Article  Google Scholar 

  39. G.P. Nethala et al., Influence of Cr on structural, spectroscopic and magnetic properties of CoFe2O4 grown by the wet chemical method. Mater. Chem. Phys. 238, 121903 (2019). https://doi.org/10.1016/j.matchemphys.2019.121903

    Article  Google Scholar 

  40. G.R. Gajula, K.N. Chidambara Kumar, L.R. Buddiga, G.P. Nethala, Dielectric and impedance properties of Li0.5Fe2.5O4 doped BaTiO3 composite ceramics. Result. Phys. 11, 899–904 (2018). https://doi.org/10.1016/j.rinp.2018.10.057

    Article  Google Scholar 

  41. Y. Slimani et al., Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  Google Scholar 

  42. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.055

    Article  Google Scholar 

  43. Y. Slimani et al., Study on the addition of SiO2 nanowires to BaTiO3: Structure, morphology, electrical and dielectric properties. J. Phys. Chem. Solids. 156, 110183 (2021). https://doi.org/10.1016/j.jpcs.2021.110183

    Article  Google Scholar 

  44. Y. Slimani, S.E. Shirsath, E. Hannachi, M.A. Almessiere, M.M. Aouna, N.E. Aldossary et al., (BaTiO3)1–x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc. 104, 1–11 (2021). https://doi.org/10.1111/jace.17931

    Article  Google Scholar 

  45. Y. Slimani et al., Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. (2015). https://doi.org/10.1007/s10948-015-3144-0

    Article  Google Scholar 

  46. E. Hannachi, M.A. Almessiere, Y. Slimani, A. Baykal, F. Ben Azzouz, AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. J. Alloy. Compd. 812, 152150 (2020). https://doi.org/10.1016/j.jallcom.2019.152150

    Article  Google Scholar 

  47. Y. Slimani, E. Hannachi, A. Ekicibil, M.A. Almessiere, F. Ben Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloy. Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

    Article  Google Scholar 

  48. A. Hamrita et al., Superconducting properties of polycrystalline YBa2Cu3O7—d prepared by sintering of ball-milled precursor powder. Ceram. Int. 40, 1461–1470 (2014). https://doi.org/10.1016/j.ceramint.2013.07.030

    Article  Google Scholar 

  49. K. Venkata Siva, S. Sudersan, A. Arockiarajan, Bipolar magnetostriction in CoFe2O4: effect of sintering, measurement temperature and prestress. J. Appl. Phys. 128, 103904 (2020)

    Google Scholar 

  50. S. Ramay, M. Saleem, S. Atiq, S.A. Siddiqi, S. Naseem, M.S. Anwar, Influence of temperature on structural and magnetic properties of Co0:5Mn0:5Fe2O4 ferrites. Bull. Mater. Sci. 34, 1415–1419 (2011)

    Google Scholar 

  51. C.R. Stein, M.T.S. Bezerra, G.H.A. Holanda et al., Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Adv. 8, 056303 (2018). https://doi.org/10.1063/1.5006321

    Article  Google Scholar 

  52. F. Acosta-Humánez, O. Almanza, C. Vargas-Hernández, Effect of sintering temperature on the structure and mean crystallite size of Zn1-xCoxO x = 0.01–0.05 samples. Superficiesy Vacío 27(2), 43–48 (2014)

    Google Scholar 

  53. M. Al-Maashani, A. Gismelseed, K. Khalaf, A.A. Yousif, A. Al-Rawas, H. Widatallah, M. Elzain, Structural and Mössbauer study of nanoparticles CoFe2O4 prepared by sol-gel auto-combustion and subsequent sintering. Hyperfine Interact. 239, 439 (2018)

    Google Scholar 

  54. C. Caizer, M. Stefanescu, Magnetic characterization of nanocrystalline Ni–Zn ferrite powder prepared by the glyoxylate precursor method. J. Phys. D 35, 3035 (2002)

    Google Scholar 

  55. P. Anjana, R.S. Arun Raj, R. Jose, P.M. Manisha Kumari, D. Sarun, K.L. Sajan, Joy, Highly enhanced dielectric permittivity in CoFe2O4 by the Gd substitution in the octahedral sites. J. Alloy. Compd. 854, 155758 (2021). https://doi.org/10.1016/j.jallcom.2020.155758

    Article  Google Scholar 

  56. G.A. Lone, M. Ikram, Investigating the structural and dielectric properties of CoFe2−xNixO4 spinel ferrite. J. Alloy. Compd. 908, 164589 (2022). https://doi.org/10.1016/j.jallcom.2022.164589

    Article  Google Scholar 

  57. R. Das, S. Sarkar, Determination of intrinsic strain in poly(vinylpyrrolidone)-capped silver nano-hexapod using X-ray diffraction technique. Curr. Sci. 109(4), 775–778 (2015)

    Google Scholar 

  58. D. Nath, F. Singh, R. Das, X-ray diffraction analysis by Williamson-Hall Halder-Wagner and size-strain plot methods of CdSe nanoparticles—a comparative study. Mater. Chem. Phys. 239, 122021 (2020)

    Google Scholar 

  59. K.V. Chandekar, K. Mohan Kant, Size-strain analysis and elastic properties of CoFe2O4 nanoplatelets by hydrothermal method. J. Mol. Struct. 0022–2860(17), 31315–31317 (2018)

    Google Scholar 

  60. M. Birkholz, Thin film analysis by X-ray scattering (Wiley-VCH Verlag, Weinheim, 2006)

    Google Scholar 

  61. D. Balzar, H. Ledbetter, Voigt-function modeling in fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26(1), 97–103 (1993)

    Google Scholar 

  62. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6–14 (2012)

    Google Scholar 

  63. P. Arora Jha, A.K. Jha, Influence of processing conditions on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics. J. Alloys Compd. 513, 580–585 (2012)

    Google Scholar 

  64. R. Nongjai, K. Shakeel Khan, H.A. Asokan, I. Khan, Magnetic and electrical properties of in doped cobalt ferrite nanoparticles. J. Appl. Phys. 112, 084321 (2012). https://doi.org/10.1063/1.4759436

    Article  Google Scholar 

  65. U. Kumar, K. Ankur, D. Yadav, S. Upadhyay, Synthesis and characterization of Ruddlesden-Popper system (Ba1xSrx)2SnO4. Mater. Charact. (2020). https://doi.org/10.1016/j.matchar.2020.110198110198

    Article  Google Scholar 

  66. K. Sakthipandi, K. Kannagi, A. Hossain, Effect of lanthanum doping on the structural, electrical, and magnetic properties of Mn0.5Cu0.5LaxFe2-xO4 nanoferrites. Ceram. Int. 46, 19634–19638 (2020). https://doi.org/10.1016/j.ceramint.2020.04.255

    Article  Google Scholar 

  67. L.L. Hench, J.K. West, Principles of electronic ceramics (John Wiley, New York, 1990)

    Google Scholar 

  68. N. Nazir, M. Ikram, Structural, dielectric, and conductivity studies of strontium-doped Gd2NiMnO6 perovskite. J. Mater. Sci. 31, 23002–23011 (2020)

    Google Scholar 

  69. S.A. Islam, F.A. Andrabi, F. Mohmed, K. Sultan, M. Ikram, K. Asokan, Ba doping induced modifications in the structural, morphological and dielectric properties of double perovskite La2NiMnO6 ceramics. J. Solid-State Chem. 290, 121597 (2020). https://doi.org/10.1016/j.jssc.2020.121597

    Article  Google Scholar 

  70. M.D. Rather, R. Samad, B. Want, J. Electron. Mater. 47, 2143 (2018)

    Google Scholar 

  71. W. Chiu, S. Radiman, R. Abd-Shukor, M. Abdullah, P. Khiew, Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J. Alloys Compd. 459, 291–297 (2008)

    Google Scholar 

  72. U. Kurtan, R. Topkaya, A. Baykal, M. Toprak, Temperature dependent magnetic properties of CoFe2O4/CTAB nanocomposite synthesized by sol–gel auto-combustion technique. Ceram. Int. 39, 6551–6558 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the central research facility centre (CRFC) National Institute of Technology Srinagar for providing the XRD facility. The Ministry of India (MoE) is also acknowledged for financial support. SEM/EDX and Dielectric measurements were taken from IUAC, New Delhi under the supervision of Dr K. Asokan, Mr R.C.Meena and Dr Saif. The authors are also highly thankful to Dr Basharat want (Professor, Dept. of Physics, Kashmir University) for the VSM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulzar Ahmad Lone.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, G.A., Ikram, M. Effect of sintering temperature on structural, dielectric and magnetic properties of CoFe1.5Ni0.5O4 prepared by solid-state reaction method. Appl. Phys. A 128, 1013 (2022). https://doi.org/10.1007/s00339-022-06159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06159-8

Keywords

Navigation