Skip to main content

Advertisement

Log in

Explore the photocatalytic and electronic properties of WSSe/g-GeC van der Waals heterostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Utilizing solar energy to split water (photocatalytic water-splitting) is a good solution for global warming. However, it is difficult to find suitable materials for photocatalytic water-splitting. In this paper, through HSE06 and GW-BSE calculations, it is found that vdWHs with Se facing g-GeC (WSSe/g-GeC vdWHs) are an ideal photocatalytic material. The WSSe/g-GeC vdWHs can form a II-type band alignment, and the band gap exceeds the free energy of water splitting. The built-in electric field from Janus WSSe and vdWHs can effectively separate photo-generated electron–hole pairs and improve carrier lifetime. Compared with single-layer WSSe, WSSe/g-GeC vdWHs exhibit smaller exciton binding energy, especially for the WSSe/g-GeC vdWH I stacking (0.32 eV). Furthermore, WSSe/g-GeC vdWHs are of high absorption coefficient in the visible light regions, showing significant advantages of using solar energy. These findings imply that the WSSe/g-GeC vdWHs are promising as candidate material for photocatalytic water-splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Cui, H. Wu, K. Bai, X. Chen, E. Li, Y. Shen, M. Wang, Fabrication of a g-C3N4/MoS2 photocatalyst for enhanced RhB degradation. Phys. E Low-dimens. Syst Nanostruct. 144, 115361 (2022)

    Article  Google Scholar 

  2. M. Sun, U. Schwingenschlögl, δ-CS: a direct-band-gap semiconductor combining auxeticity, ferroelasticity, and potential for high-efficiency solar cells. Phys. Rev. Appl. 14(4), 044015 (2020)

    Article  ADS  Google Scholar 

  3. S. Cao, L. Piao, X. Chen, Emerging photocatalysts for hydrogen evolution. Trends Chem. 2(1), 57–70 (2020)

    Article  Google Scholar 

  4. A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Hennig, Computational screening of 2D materials for photocatalysis. J. Phys. Chem. Lett. 6(6), 1087–1098 (2015)

    Article  Google Scholar 

  5. X. Meng, Z. Zhang, Two dimensional graphitic materials for photoelectrocatalysis: a short review. Catal. Today 315, 2–8 (2018)

    Article  Google Scholar 

  6. A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, L.J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017)

    Article  Google Scholar 

  7. D.B. Trivedi, G. Turgut, Y. Qin, M.Y. Sayyad, D. Hajra, M. Howell, S. Tongay, Room-Temperature Synthesis of 2D Janus Crystals and their Heterostructures. Adv. Mater. 32(50), 2006320 (2020)

    Article  Google Scholar 

  8. W.J. Yin, B. Wen, G.Z. Nie, X.L. Wei, L.M. Liu, Tunable dipole and carrier mobility for a few layer Janus MoSSe structure. J. Mater. Chem. C 6(7), 1693–1700 (2018)

    Article  Google Scholar 

  9. Z. Guan, S. Ni, S. Hu, Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. J. Phys. Chem. C 122(11), 6209–6216 (2018)

    Article  Google Scholar 

  10. L. Ju, M. Bie, X. Tang, J. Shang, L. Kou, Janus WSSe monolayer: an excellent photocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 12(26), 29335–29343 (2020)

    Google Scholar 

  11. P. Wang, Y. Zong, H. Liu, H. Wen, H.B. Wu, J.B. Xia, Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J. Mater. Chem. C 9(14), 4989–4999 (2021)

    Article  Google Scholar 

  12. X. Gao, Y. Shen, Y. Ma, S. Wu, Z. Zhou, ZnO/g-GeC van der Waals heterostructure: novel photocatalyst for small molecule splitting. J. Mater. Chem. C 7(16), 4791–4799 (2019)

    Article  Google Scholar 

  13. X. Gao, Y. Shen, Y. Ma, S. Wu, Z. Zhou, A water splitting photocatalysis: blue phosphorus/g-GeC van der Waals heterostructure. Appl. Phys. Lett. 114(9), 093902 (2019)

    Article  ADS  Google Scholar 

  14. Y.L. Liu, Y. Shi, H. Yin, C.L. Yang, Two-dimensional BP/β-AsP van der Waals heterostructures as promising photocatalyst for water splitting. Appl. Phys. Lett. 117(6), 063901 (2020)

    Article  ADS  Google Scholar 

  15. P. Lou, J.Y. Lee, GeC/GaN vdW heterojunctions: a promising photocatalyst for overall water splitting and solar energy conversion. ACS Appl. Mater. Interfaces 12(12), 14289–14297 (2020)

    Article  Google Scholar 

  16. T. Zhao, J. Chen, X. Wang, M. Yao, Probing the electronic structure and photocatalytic performance of g-SiC/MoSSe van der Waals heterostructures: a first-principle study. Appl. Surf. Sci. 536, 147708 (2021)

    Article  Google Scholar 

  17. L.Z. Liu, X.L. Wu, X.X. Liu, P.K. Chu, Strain-induced band structure and mobility modulation in graphitic blue phosphorus. Appl. Surf. Sci. 356, 626–630 (2015)

    Article  ADS  Google Scholar 

  18. X. Ma, X. Wu, H. Wang, Y. Wang, A Janus MoSSe monolayer: a potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate. J. Mater. Chem. A 6(5), 2295–2301 (2018)

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  20. P. Deák, B. Aradi, T. Frauenheim, E. Janzén, A. Gali, Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81(15), 153203 (2010)

    Article  ADS  Google Scholar 

  21. X. Chen, J. Jiang, Q. Liang, R. Meng, C. Tan, Q. Yang, H. Zeng, Tunable electronic structure and enhanced optical properties in quasi-metallic hydrogenated/fluorinated SiC heterobilayer. J. Mater. Chem. C 4(31), 7406–7414 (2016)

    Article  Google Scholar 

  22. S. Deng, L. Li, P. Rees, Graphene/MoXY heterostructures adjusted by interlayer distance, external electric field, and strain for tunable devices. ACS Appl. Nano Mater. 2(6), 3977–3988 (2019)

    Article  Google Scholar 

  23. Z. Cui, K. Ren, Y. Zhao, X. Wang, H. Shu, J. Yu, M. Sun, Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides. Appl. Surf. Sci. 492, 513–519 (2019)

    Article  ADS  Google Scholar 

  24. G. Wang, F. Zhou, B. Yuan, S. Xiao, A. Kuang, M. Zhong, W. Zhang, Strain-tunable visible-light-responsive photocatalytic properties of two-dimensional CdS/g-C3N4: a hybrid density functional study. Nanomaterials 9(2), 244 (2019)

    Article  Google Scholar 

  25. Y.C. Rao, S. Yu, X.M. Duan, Electrical and optical behaviors of SiC (GeC)/MoS2 heterostructures: a first principles study. Phys. Chem. Chem. Phys. 19(26), 17250–17255 (2017)

    Article  Google Scholar 

  26. Y. Jiao, L. Zhou, F. Ma, G. Gao, L. Kou, J. Bell, A. Du, Predicting single-layer technetium dichalcogenides (TcX2, X=S, Se) with promising applications in photovoltaics and photocatalysis. ACS Appl. Mater. Interfaces 8(8), 5385–5392 (2016)

    Article  Google Scholar 

  27. K. Ren, W. Tang, M. Sun, Y. Cai, Y. Cheng, G. Zhang, A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency. Nanoscale 12(33), 17281–17289 (2020)

    Article  Google Scholar 

  28. A. Singh, M. Jain, S. Bhattacharya, MoS2 and Janus (MoSSe) based 2D van der Waals heterostructures: emerging direct Z-scheme photocatalysts. Nanoscale Adv. 3(10), 2837–2845 (2021)

    Article  ADS  Google Scholar 

  29. Y. Luo, S. Wang, K. Ren, J.P. Chou, J. Yu, Z. Sun, M. Sun, Transition-metal dichalcogenides/Mg(OH)2 van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study. Phys. Chem. Chem. Phys. 21(4), 1791–1796 (2019)

    Article  Google Scholar 

  30. Y. Yang, T. Song, X. Zhang, Y. Zhao, J. Chai, Z. Cheng, M. Yang, Substrate mediated electronic and excitonic reconstruction in a MoS2 monolayer. J. Mater. Chem. C 8(34), 11778–11785 (2020)

    Article  Google Scholar 

  31. A.J. Cowan, J.R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chem. Soc. Rev. 42(6), 2281–2293 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11774052, 11774051, 61771137, 12174049), and the Jiangsu Provincial Key Research and Development Program (BE2020006-1). Additionally, we acknowledge the Advanced Computing East China Sub-center, Big Data Center of Southeast University for the facility support on the calculations in this manuscript and the Shanghai Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Lei.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y.C., Fan, L.H., Lei, S.Y. et al. Explore the photocatalytic and electronic properties of WSSe/g-GeC van der Waals heterostructures. Appl. Phys. A 128, 1029 (2022). https://doi.org/10.1007/s00339-022-06150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06150-3

Keywords

Navigation