Skip to main content
Log in

Optoelectronic and Photocatalytic Properties of SiC and VXY (X = Cl, Br and Y = Se, Te) van der Waals Heterostructures

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent investigations have demonstrated that transition metal dichalcogenides (TMDs) are excellent candidates for water-splitting photocatalysis to produce hydrogen energy, but they exhibit a high recombination rate of photogenerated charge carriers, which hinders their practical application. Constructing novel TMD-based van der Walls (vdW) heterostructures is a promising strategy to suppress charge recombination, providing an opportunity to uncover new photocatalysts with improved water-splitting efficiency. In this work, we investigate the structural, optoelectronic and photocatalytic properties of the most favorable stacking pattern of SiC-VXY (X = Cl, Br and Y = Se, Te) vdW heterostructures using first-principles calculations. The results indicate that SiC-VXY (X = Cl, Br and Y = Se, Te) vdW heterostructures exhibit an indirect bandgap with type II band alignments, which effectively separate photoexcited electron-hole pairs at the interface. Moreover, the band edge positions of SiC-VXY bilayer systems straddle the redox potential of water, indicating that these heterostructures have the potential to become efficient photocatalysts for water splitting. Our theoretical investigation provides certain basis for designing novel TMD-based water-splitting photocatalysts and can pave the path for future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renew. Sust. Energ. Rev. 146, 111180 (2021).

    Article  Google Scholar 

  2. S. Wang, A. Lu, and C.-J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Converg. 4, 1 (2021).

    Google Scholar 

  3. L. Barelli, G. Bidini, F. Gallorini, and S. Servili, Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33(4), 554 (2008).

    Article  CAS  Google Scholar 

  4. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, and Y. Lai, One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017).

    Article  Google Scholar 

  5. S.U.M. Khan, M. Al-Shahry, and W.B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243 (2002).

    Article  CAS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  7. R. da Silva, R.R. Mançano, N. Durães, R.B. Pontes, R.H. Miwa, and A. Fazzio, Metal chalcogenides Janus monolayers for efficient hydrogen generation by photocatalytic water splitting. ACS Appl. Nano Mater. 2, 890 (2019).

    Article  Google Scholar 

  8. A. Bafekry, M. Faraji, M.M. Fadlallah, H.R. Jappor, N.N. Hieu, M. Ghergherehchi, and D. Gogova, Ab-initio-driven prediction of puckered penta-like PdPSeX (X = O, S, Te) Janus monolayers: study on the electronic, optical, mechanical and photocatalytic properties. Appl. Surf. Sci. 582, 152356 (2022).

    Article  CAS  Google Scholar 

  9. I. Ahmad, I. Shahid, A. Ali, L. Gao, and J. Cai, Electronic, mechanical, optical and photocatalytic properties of two-dimensional Janus XGaInY (X, Y = S, Se and Te) monolayers. RSC Adv. 11, 17230 (2021).

    Article  CAS  Google Scholar 

  10. S. Lin, Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951 (2012).

    Article  CAS  Google Scholar 

  11. S. Demirci, N. Avazli, E. Durgun, and S. Cahangirov, Structural and electronic properties of monolayer group III monochalcogenides. Phys. Rev. B 95, 115409 (2017).

    Article  Google Scholar 

  12. A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.-Y. Chou, X. Zhang, and L.J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744 (2017).

    Article  CAS  Google Scholar 

  13. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, and J. Luo, Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192 (2017).

    Article  CAS  Google Scholar 

  14. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, Anomalous lattice vibrations of single- and Few-Layer MoS2. ACS Nano 4, 2695 (2010).

    Article  CAS  Google Scholar 

  15. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Computational search for single-layer transition-metal dichalcogenide photocatalysts. Nat. Nanotechnol. 6, 147 (2011).

    Article  CAS  Google Scholar 

  16. H.L. Zhuang and R.G. Hennig, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. J. Phys. Chem. C 117, 20440 (2013).

    Article  CAS  Google Scholar 

  17. H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, and M. Terrones, Janus monolayers of transition metal dichalcogenides. Nano Lett. 13, 3447 (2013).

    CAS  Google Scholar 

  18. Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739 (2008).

    Article  CAS  Google Scholar 

  19. L. Yuan, T.-F. Chung, A. Kuc, Y. Wan, Y. Xu, Y.P. Chen, T. Heine, and L. Huang, Photocarrier generation from interlayer charge transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, 1700324 (2018).

    Article  Google Scholar 

  20. H. Wang, C. Zhang, and F. Rana, Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett. 15, 8204 (2015).

    Article  CAS  Google Scholar 

  21. M. Idrees, H.U. Din, R. Ali, G. Rehman, T. Hussain, C.V. Nguyen, I. Ahmad, and B. Amin, Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructure. Phy. Chem. Chem. Phy. 21, 18612 (2019).

    Article  CAS  Google Scholar 

  22. Y.-L. Liu, Y. Shi, H. Yin, and C.-L. Yang, Two-dimensional BP/b-AsP van der Waals heterostructures as promising photocatalyst for water splitting. Appl. Phys. Lett. 117, 063901 (2020).

    Article  CAS  Google Scholar 

  23. B. Gao, J.R. Zhang, L. Chen, J. Guo, S. Shen, C.T. Au, S.F. Yin, and M.Q. Cai, Density functional theory calculation on two-dimensional MoS2/BiOX (X = Cl, Br, I) van der Waals heterostructures for photocatalytic action. Appl. Surf. Sci. 492, 157 (2019).

    Article  CAS  Google Scholar 

  24. C.S. Liao, Q.Q. Zhao, Y. Zhao, Z.L. Yu, H. Zhou, P.B. He, J.L. Yang, and M.Q. Cai, First-principles investigations of electronic and optical properties in the MoS2/CsPbBr3 heterostructure. J. Phys. Chem. Solids 135, 109060 (2019).

    Article  CAS  Google Scholar 

  25. J. Hu, D. Chen, Z. Mo, N. Li, Q. Xu, H. Li, J. He, H. Xu, and J. Lu, Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew. Chem. Int. Ed. 58, 2073 (2019).

    Article  CAS  Google Scholar 

  26. J. Zhang, C. Xing, and F. Shi, MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation. Int. J. Hydrogen Energy 45, 6291 (2020).

    Article  CAS  Google Scholar 

  27. X. An, W. Wang, J. Wang, H. Duan, J. Shi, and X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405 (2018).

    Article  CAS  Google Scholar 

  28. J. Li, Z. Huang, W. Ke, J. Yu, K. Ren, and Z. Dong, High solar-to-hydrogen efficiency in Arsenene/GaX (X = S, Se) van der Waals heterostructure for photocatalytic water splitting. J. Alloys Compd. 866, 158774 (2021).

    Article  CAS  Google Scholar 

  29. T.A. Alrebdil and B. Amin, Optoelectronic and photocatalytic applications of hBP-XMY (M=Mo, W; (X=Y)=S, Se, Te) van der Waals heterostructures. Phys. Chem. Chem. Phys. 22, 23028 (2020).

    Article  Google Scholar 

  30. X. Li, R. Shen, S. Ma, X. Chen, and J. Xie, Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).

    Article  CAS  Google Scholar 

  31. C. Xuefeng, H. Wenna, J. Minglei, R. Fengzhu, P. Chengxiao, G. Qinfen, W. Bing, and Y. Huabing, A direct Z-scheme MoSi2N4/BlueP vdW heterostructure for photocatalytic overall water splitting. J. Phys. D: Appl. Phys. 55, 215502 (2022).

    Article  Google Scholar 

  32. M. Idrees, H.U. Din, S.A. Khan, I. Ahmad, L.-Y. Gan, C.V. Nguyen, and B. Amin, Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. J. Appl. Phys. 125, 094301 (2019).

    Article  Google Scholar 

  33. T.N. Do, M. Idrees, B. Amin, N.N. Hieu, H.V. Phuc, N.V. Hieu, L.T. Hoa, and C.V. Nguyen, Electronic and photocatalytic properties of two-dimensional boron phosphide/SiC van der Waals heterostructure with direct type-II band alignment: a first principles study. RSC Adv. 10, 32027 (2020).

    Article  CAS  Google Scholar 

  34. H.U. Din, M. Idrees, A. Albar, M. Shafiq, I. Ahmad, and C.V. Nguyen, Rashba spin splitting and photocatalytic properties of GeC-MSSe (M= Mo, W) van der Waals heterostructures. Phys. Rev. B 100, 165425 (2019).

    Article  CAS  Google Scholar 

  35. F. Li, W. Wei, P. Zhao, B. Huang, and Y. Dai, Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 8, 5959 (2017).

    Article  CAS  Google Scholar 

  36. M. Idrees, M. Fawad, M. Bilal, Y. Saeed, C. Nguyen, and B. Amin, Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study. RSC Adv. 10, 25801 (2020).

    Article  CAS  Google Scholar 

  37. H.U. Din, M. Idrees, G. Rehman, C.V. Nguyen, L.-Y. Gan, I. Ahmad, M. Maqbool, and B. Amin, Electronic structure, optical and photocatalytic performance of SiC–MX2 (M = Mo, W and X = S, Se) van der Waals heterostructures. Phys. Chem. Chem. Phys. 20, 24168 (2018).

    Article  CAS  Google Scholar 

  38. G. Kresse and E. Furthmüller, Generalized gradient approximation made simple. J. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  39. J.P. Perdew, K. Burke, and M. Ernzerhof, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  40. S.J. Grimme, Hybrid functionals based on a screened Coulomb potential. Comput. Chem. 27, 1787 (2006).

    Article  CAS  Google Scholar 

  41. J. Heyd, G.E. Scuseria, and M.J. Ernzerhof, Janus VXY monolayers with tunable large Berry curvature. Chem. Phys. 118, 8207 (2003).

    CAS  Google Scholar 

  42. W. Liu, X. Li, C. Zhang, and S. Yan, Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study. J. Simi Cond. 43, 042501 (2022).

    Google Scholar 

  43. Q. Peng, Z. Wang, B. Sa, B. Wu, and Z. Sun, Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study. Sci. Rep. 6, 31994 (2016).

    Article  CAS  Google Scholar 

  44. V.D. Ganesan, J. Linghu, C. Zhang, Y.P. Feng, and L. Shen, Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study. Appl. Phys. Lett. 108, 122105 (2016).

    Article  Google Scholar 

  45. Y. Sun, L. Luan, J. Zhao, Y. Zhang, X. Weia, J. Fan, L. Ni, C. Liu, Y. Yang, J. Liu, Y. Tian, and L. Duan, Calculation of tunable electronic and optical properties of AlSb/CdSe heterojunction based on first principle. Appl. Surf. Sci. 614, 156261 (2023).

    Article  CAS  Google Scholar 

  46. C. Ge, B. Wang, H. Yang, Q. Feng, S. Huang, X. Zu, L. Li, and H. Deng, Direct Z-scheme GaSe/ZrS2 heterojunction for overall water splitting. Int. J. Hydrog. Energy 48, 13460 (2023).

    Article  CAS  Google Scholar 

  47. M. Ashtar, M.A. Marwat, Y. Yang, and D.W. Cao, Two-dimensional ZnO/ZrXY (X, Y= Br, Cl and F) van der Waals heterostructures as promising photocatalysts for high efficiency water splitting. Int. J. Hydrogen Energy (2023).

  48. M.R. Ashwin Kishore, K. Larsson, and P. Ravindran, Two-dimensional CdX/C2N (X = S, Se) heterostructures as potential photocatalysts for water splitting: A DFT study. ACS Omega 5, 23762 (2020).

    Article  CAS  Google Scholar 

  49. W. Zan, W. Geng, H. Liu, and X. Yao, Electronic properties of MoS2 on monolayer, bilayer and bulk SiC: a density functional theory study. J. Alloy. Compd. 666, 204 (2016).

    Article  CAS  Google Scholar 

  50. M. Idrees, B. Amin, Y. Chen, and X. Yan, Design of novel type-I (type-II) band alignment in GeC-VXY (V = Cl, Br; Y= Se, Te) van der Waals heterostructure for optoelectronic and renewable energy application. Appl. Surf. Sci. 615, 156260 (2023).

    Article  CAS  Google Scholar 

  51. H. Qiao, Y. Zhang, Z.-H. Yan, L. Duan, J.-B. Fan, and L. Ni, The type-II PtSe2/WS2 van der Waals heterostructure: a high efficiency water-splitting photocatalyst. Surf. Sci. 723, 122103 (2022).

    Article  CAS  Google Scholar 

  52. Z. Zhang, and J.T. Yates Jr., Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112, 5520 (2012).

    Article  CAS  Google Scholar 

  53. X. Liang, H.W. Qing, H. Wangyu, Y. Ke, Z.B. Xin, P. Anlian, and G.F. Huang, Two-dimensional MoS2-graphene-based multilayer van der Waals heterostructures: enhanced charge transfer and optical absorption, and electric-field tunable Dirac point and band gap. Chem. Mater. 29, 5504 (2017).

    Article  Google Scholar 

  54. B. You, X. Wang, Z. Zheng, and W. Mi, First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Chem. Chem. Phys. 18, 7381 (2016).

    Article  CAS  Google Scholar 

  55. S. Kajita, T. Nakayama, and J. Yamauchi, Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. J. Phys. Conf. Ser. 29, 120 (2006).

    Article  CAS  Google Scholar 

  56. M. Idrees, H. Din, R. Ali, G. Rehman, T. Hussain, C. Nguyen, I. Ahmad, and B. Amin, Efficient carrier separation in graphitic zinc oxide and blue phosphorus van der Waals heterostructure. Phys. Chem. Phys. Chem. 21, 18612 (2019).

    Article  CAS  Google Scholar 

  57. E. Bekaroglu, M. Topsakal, S. Cahangirow, and S. Ciraci, Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations. Phys. Rev. B 81, 075433 (2010).

    Article  Google Scholar 

  58. Z. Huang, C. He, X. Qi, H. Yang, W. Liu, X. Wei, X. Peng, and J. Zhong, Density functional calculation of work function using charged slab systems. J. Phys. D Appl. Phys. 47, 075301 (2014).

    Article  CAS  Google Scholar 

  59. C.F. Fu, J.Y. Sun, Q.Q. Luo, X.X. Li, W. Hu, and J.L. Yang, Intrinsic electric fields in two-dimensional materials boost the solar-to-hydrogen efficiency for photocatalytic water splitting. Nano Lett. 18, 6312 (2018).

    Article  CAS  Google Scholar 

  60. L. Ju, X. Tang, J. Li, L.R. Shi, and D. Yuan, Breaking the out-of-plane symmetry of Janus WSSe bilayer with chalcogen substitution for enhanced photocatalytic overall water-splitting. Appl. Surf. Sci. 574, 151692 (2022).

    Article  CAS  Google Scholar 

  61. X.H. Li, B.J. Wang, G.D. Wang, X.F. Yang, R.Q. Zhao, X.T. Jia, and S.H. Ke, A two-dimensional arsenene/g-C3N4 van der Waals heterostructure: a highly efficient photocatalyst for water splitting. Sustain. Energy Fuels 5, 2249 (2021).

    Article  CAS  Google Scholar 

  62. Z.K. Yang, H.M. Chen, F.F. Wu, Y. Hou, J.Y. Qiao, X.B. Ma, H.C. Bai, B. Ma, and J.P. Li, Investigation on photocatalytic property of SiH/GaSe and SiH/InSe heterojunctions for photocatalytic water splitting. Int. J. Hydrogen Energy 47, 31295 (2022).

    Article  CAS  Google Scholar 

  63. R. Zhang, F.F. Zhuang, R. Zhou, J.S. Ma, H.B. Li, K. Wang, X.J. Ye, and G.Q. Hao, Enhanced photoactivity and anti-photocorrosion of Z-scheme Zr2CO2/WSe2 heterostructure for overall water splitting. J. Phys. Chem. Solid. 171, 111014 (2022).

    Article  CAS  Google Scholar 

  64. S.E. Tsoeu, F. Opoku, and P.P. Govender, Tuning the electronic, optical and structural properties of GaS/C2N van der Waals heterostructure for photovoltaic application: first-principle calculations. SN Appl. Sci. 2(341), 45422 (2020).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52272213), Natural Science Research of Jiangsu Higher Education Institutions of China (No. 21KJB140005), Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment (No. XTCX2024), and Jiangsu Funding Program for Excellent postdoctoral Talent (2023ZB874). D. Cao appreciates the support from the Jiangsu Specially-Appointed Professor Program.

Author information

Authors and Affiliations

Authors

Contributions

MA designed the model and the computational framework, performed the calculations and analyzed the data. MAM and ZL helped in writing—review and editing the manuscript, YY and DC supervised the project.

Corresponding authors

Correspondence to Ying Yang or Dawei Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashtar, M., Marwat, M.A., Li, Z. et al. Optoelectronic and Photocatalytic Properties of SiC and VXY (X = Cl, Br and Y = Se, Te) van der Waals Heterostructures. J. Electron. Mater. 52, 8038–8049 (2023). https://doi.org/10.1007/s11664-023-10712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10712-3

Keywords

Navigation