Skip to main content
Log in

A comprehensive study of X-ray peak broadening and optical spectrum of Cu2ZnSnS4 nanocrystals for the determination of microstructural and optical parameters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, we report a comparative analysis of the detailed structural parameters including crystallite size, stress, strain, and energy density of solvothermally prepared Cu2ZnSnS4 (CZTS) nanocrystals (NCs) based on X-ray diffraction pattern. XRD profile analysis was performed using different models such as, Scherrer, Monshi–Scherrer, Williamson–Hall (WH), Size–Strain Plot (SSP), Halder–Wagner (HW), and Warren–Averbach (WA) methods. The average crystallite size obtained by each method was compared with the mean particle size estimated from SEM and TEM images, which indicates that HW and WA methods yield similar crystallite size to that observed in SEM or TEM micrographs. On the other hand, the diffuse reflectance spectrum was analyzed by Kubelka–Munk (KM) relation and compared with Kramers–Kronig (KK) relations. Both methods give similar value of optical band gap for CZTS NCs, suggesting that KK method can be a useful supportive to Kubelka–Munk formalism. A high Urbach energy of 234 meV was estimated from equivalent absorption coefficient, which can be attributed to the increased structural disorder originated in the NCs due to their nanometric size. The optical reflectance measurement was used to derive the optical constants of CZTS NCs from KK analysis. The present research may serve as important guideline to determine accurate structural and optical parameters of the material under investigation for their effective use in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. V. Wagner, A. Dullaart, A.-K. Bock, A. Zweck, The emerging nanomedicine landscape. Nat Biotechnol. 24, 1211–1217 (2006). https://doi.org/10.1038/nbt1006-1211

    Article  Google Scholar 

  2. F.A. Buot, Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology. Phys. Rep. 234, 73–174 (1993). https://doi.org/10.1016/0370-1573(93)90097-W

    Article  ADS  Google Scholar 

  3. F.L. de Souza, E. Leite, Nanoenergy Nanotechnology Applied for Energy Production, second. (Springer International Publishing, Cham AG, 2018)

    Book  Google Scholar 

  4. S. Giraldo, Z. Jehl, M. Placidi, V. Izquierdo-Roca, A. Pérez-Rodríguez, E. Saucedo, Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 31, 1806692 (2019). https://doi.org/10.1002/adma.201806692

    Article  Google Scholar 

  5. D. Mora-Herrera, M. Pal, F. Paraguay-Delgado, Facile solvothermal synthesis of Cu2ZnSn1-xGexS4 nanocrystals: effect of Ge content on optical and electrical properties. Mater. Chem. Phys. 257, 123764 (2021). https://doi.org/10.1016/j.matchemphys.2020.123764

    Article  Google Scholar 

  6. D. Mora-Herrera, R. Silva-González, F.E. Cancino-Gordillo, M. Pal, Development of Cu2ZnSnS4 films from a non-toxic molecular precursor ink and theoretical investigation of device performance using experimental outcomes. Sol. Energy 199, 246–255 (2020). https://doi.org/10.1016/j.solener.2020.01.077

    Article  ADS  Google Scholar 

  7. S. Adachi, Earth-Abundant Materials for Solar Cells Cu2–II–IV–VI4 Semiconductors, First. (John Wiley & Sons, Ltd, 2015)

    Book  Google Scholar 

  8. K. Ito, Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, 1st edn. (John Wiley & Sons, Ltd, 2015)

    Google Scholar 

  9. S. Chen, H. Tao, Y. Shen, L. Zhu, X. Zeng, J. Tao, T. Wang, Facile synthesis of single crystalline sub-micron Cu2ZnSnS4 (CZTS) powders using solvothermal treatment. RSC Adv. 5, 6682–6686 (2015). https://doi.org/10.1039/C4RA12815J

    Article  ADS  Google Scholar 

  10. S.-Y. Wei, Y.-C. Liao, C.-H. Hsu, C.-H. Cai, W.-C. Huang, M.-C. Huang, C.-H. Lai, Achieving high efficiency Cu2ZnSn(S, Se)4 solar cells by non-toxic aqueous ink: defect analysis and electrical modeling. Nano Energy 26, 74–82 (2016). https://doi.org/10.1016/j.nanoen.2016.04.059

    Article  Google Scholar 

  11. X. Xin, M. He, W. Han, J. Jung, Z. Lin, Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed. 50(49), 11739–11742 (2011). https://doi.org/10.1002/anie.201104786

    Article  Google Scholar 

  12. J.-J. Wang, J.-S. Hu, Y.-G. Guo, L.-J. Wan, Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic-inorganic hybrid photodetectors. NPG Asia Mater. 4, e2 (2012). https://doi.org/10.1038/am.2012.2

    Article  Google Scholar 

  13. S.D. Sharma, B. Khasimsaheb, Y.Y. Chen, S. Neeleshwar, Enhanced thermoelectric performance of Cu2ZnSnS4 (CZTS) by incorporating Ag nanoparticles. Ceram. Int. 45, 2060–2068 (2019). https://doi.org/10.1016/j.ceramint.2018.10.109

    Article  Google Scholar 

  14. Y. Wang, X. Fu, T. Wang, F. Li, D. Li, Y. Yang, X. Dong, Polyoxometalate electron acceptor incorporated improved properties of Cu2ZnSnS4-based room temperature NO2 gas sensor. Sens. Actuators, B Chem. 348, 130683 (2021). https://doi.org/10.1016/j.snb.2021.130683

    Article  Google Scholar 

  15. A.S. Nazligul, M. Wang, K.L. Choy, Recent development in earth-abundant kesterite materials and their applications. Sustainability. 12(12), 5138 (2020). https://doi.org/10.3390/su12125138

    Article  Google Scholar 

  16. S. Schorr, The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study. Sol. Energy Mater. Sol. Cells 95, 1482–1488 (2011). https://doi.org/10.1016/j.solmat.2011.01.002

    Article  ADS  Google Scholar 

  17. F.-J. Fan, L. Wu, S.-H. Yu, Energetic I-III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ. Sci. 7, 190 (2014). https://doi.org/10.1039/C3EE41437J

    Article  Google Scholar 

  18. A. Kamble, K. Mokurala, A. Gupta, S. Mallick, P. Bhargava, Synthesis of Cu2NiSnS4 nanoparticles by hot injection method for photovoltaic applications. Mater. Lett. 137, 440–443 (2014). https://doi.org/10.1016/j.matlet.2014.09.065

    Article  Google Scholar 

  19. S. Engberg, J. Symonowicz, J. Schou, S. Canulescu, K.M.Ø. Jensen, Characterization of Cu2ZnSnS4 particles obtained by the hot-injection method. ACS Omega 5(18), 10501–10509 (2020). https://doi.org/10.1021/acsomega.0c00657

    Article  Google Scholar 

  20. R. Aruna-Devi, M. Latha, S. Velumani, J.Á. Chávez-Carvayar, Structural and optical properties of CZTS nanoparticles prepared by a colloidal process. Rare Met. 40, 2602–2609 (2021). https://doi.org/10.1007/s12598-019-01288-1

    Article  Google Scholar 

  21. Y.L. Zhou, W.H. Zhou, Y.F. Du, M. Li, S.X. Wu, Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method. Mater. Lett. 65, 1535–1537 (2011). https://doi.org/10.1016/j.matlet.2011.03.013

    Article  Google Scholar 

  22. M. Li, W.H. Zhou, J. Guo, Y.L. Zhou, Z.L. Hou, J. Jiao, Z.J. Zhou, Z.L. Du, S.X. Wu, Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method. J. Phys. Chem. C. 116, 26507–26516 (2012). https://doi.org/10.1021/jp307346k

    Article  Google Scholar 

  23. Y. Xia, Z. Chen, Z. Zhang, X. Fang, G. Liang, A nontoxic and low-cost hydrothermal route for synthesis of hierarchical Cu2ZnSnS4 particles. Nanoscale Res. Lett. 9, 208 (2014). https://doi.org/10.1186/1556-276X-9-208

    Article  ADS  Google Scholar 

  24. A. Guinier, X-ray Diffraction in Crystals (Imperfect Crystals and Amorphous Bodies, Dover, New York, 1994)

    Google Scholar 

  25. B. D. Cullity, Elements of X-ray diffraction, 2rd ed., Addison-Wesley Series in Metallurgy and Materials, 1978.

  26. S. Chen, X.G. Gong, Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys. Rev. B 79, 165211 (2009). https://doi.org/10.1103/PhysRevB.79.165211

    Article  ADS  Google Scholar 

  27. B.E. Warren, B.L. Averbach, The separation of cold-work distortion and particle size broadening in X-ray patterns. J. Appl. Phys. 23(4), 497 (1952). https://doi.org/10.1063/1.1702234

    Article  ADS  Google Scholar 

  28. W.H. Hall, X-ray line broadening in metals. Proc. Phys. Soc. Sect. A. 62(11), 741–743 (1949). https://doi.org/10.1088/0370-1298/62/11/110

    Article  ADS  Google Scholar 

  29. P.S. Theocaris, D.P. Sokolis, Invariant elastic constants and eigentensors of orthorhombic, tetragonal, hexagonal and cubic crystalline media. Acta Cryst. A56, 319–331 (2000). https://doi.org/10.1107/S0108767300001926

    Article  MathSciNet  MATH  Google Scholar 

  30. J.F. Nye, Physical Properties of Crystals They Representation by Tensors and Matrices, first. (Oxford Science Publications, Oxford, 1985)

    Google Scholar 

  31. X. He, H. Shen, First-principles study of elastic and thermo-physical properties of kesterite-type Cu2ZnSnS4. Physica B. 406, 4604–4607 (2011). https://doi.org/10.1016/j.physb.2011.09.035

    Article  ADS  Google Scholar 

  32. M. Jamiati, B. Khoshnevisan, M. Mohammadi, Second- and third-order elastic constants of kesterite CZTS and its electronic and optical properties under various strain rates. Energy Sour., Part A: Recovery, Utilization, Environ. Eff. 40, 977–986 (2018). https://doi.org/10.1080/15567036.2018.1468509

    Article  Google Scholar 

  33. D. Balzar, H. Ledbetter, Voigt-function modeling in fourier analysis of size- and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26(1), 97–103 (1993). https://doi.org/10.1107/S0021889892008987

    Article  Google Scholar 

  34. N.C. Halder, C.N.J. Wagner, Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 20(2), 312–331 (1966). https://doi.org/10.1107/S0365110X66000628

    Article  Google Scholar 

  35. R. Delhez, Th.H. de Keijser, E.J. Mittemeijer, Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Fresenius Z Anal Chem. 312, 1–16 (1982). https://doi.org/10.1007/BF00482725

    Article  Google Scholar 

  36. H. Bantikatla, N.S.M.P. Latha Devi, R.K. Bhogoju, Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models a review. Mater. Today: Proc. 47(14), 4891–4896 (2021). https://doi.org/10.1016/j.matpr.2021.06.256

    Article  Google Scholar 

  37. C.E. Kril, R. Birringer, Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis. Phil. Mag. 77A, 621–640 (1998). https://doi.org/10.1080/01418619808224072

    Article  ADS  Google Scholar 

  38. S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522–1539 (2013). https://doi.org/10.1002/adma.201203146

    Article  Google Scholar 

  39. A. Walsh, S. Chen, S.-H. Wei, X.-G. Gong, Kesterite thin-film solar cells: advances in materials modelling of Cu2ZnSnS4. Adv. Energy Mater. 2, 400–409 (2012). https://doi.org/10.1002/aenm.201100630

    Article  Google Scholar 

  40. J.M. Skelton, A.J. Jackson, M. Dimitrievska, S.K. Wallace, A. Walsh, Vibrational spectra and lattice thermal conductivity of kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4. APL Mater. 3, 041102 (2015). https://doi.org/10.1063/1.4917044

    Article  ADS  Google Scholar 

  41. A.G. Kannan, T.E. Manjulavalli, J. Chandrasekaran, Influence of solvent on the properties of CZTS nanoparticles. Procedia Eng. 141, 15–22 (2016). https://doi.org/10.1016/j.proeng.2015.08.1112

    Article  Google Scholar 

  42. G. Rey, G. Larramona, S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Dennler, S. Siebentritt, On the origin of band-tails in kesterite. Sol. Energy Mater. Sol. Cell. 179, 142–151 (2018). https://doi.org/10.1016/j.solmat.2017.11.005

    Article  Google Scholar 

  43. I. Studenyak, M. Kranjec, M. Kurik, Urbach rule in solid state physics. Int. J. Opt. Appl. 4, 76–83 (2014). https://doi.org/10.5923/j.optics.20140403.02

    Article  Google Scholar 

  44. J. Chen, Y. Sun, J. Ju, F. Wang, Y. Jin, C. Zhang, J. Kong, X. Peng, C. Wang, H. Dong, Q. Chen, X. Dou, Cu2ZnSnS4 thin film fabricated by the calcinated nanocrystals. Cryst. Res. Technol. (2020). https://doi.org/10.1002/crat.202000081

    Article  Google Scholar 

  45. D. M. Roessler, Kramers-Kronig analysis of reflection data. Br. J. Appl. Phys. 16, 1119 (1965). http://iopscience.iop.org/0508-3443/16/8/310

  46. J.I. Pankove, Optical Processes in Semiconductors, 2nd edn. (Dover Publications Inc, New York, 1975)

    Google Scholar 

  47. T.S. Moss, Optical Properties of Semiconductors, 3rd edn. (Butter Worths S, London, 1961)

    Google Scholar 

  48. B. R. Bade, S. R. Rondiya, Y. A. Jadhav, M. M. Kamble, S. V. Barma, S. B. Jathar, M. P. Nasane, S. R. Jadkar, A. M. Funde, N. Y. Dzade, Investigations of the structural, optoelectronic and band alignment properties of Cu2ZnSnS4 prepared by hot-injection method towards low-cost photovoltaic application. J. Alloy. Compd. 854, 157093 (2021). https://doi.org/10.1016/j.jallcom.2020.157093

    Article  Google Scholar 

Download references

Acknowledgements

D. Mora-Herrera (CVU 862194) is thankful to CONACYT for extending doctoral scholarship in Materials Science. We acknowledge the help received from Dr. Ulises Salazar Kuri of X-ray diffraction laboratory of Institute of Physics, BUAP to extend the facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Herrera, D., Pal, M. A comprehensive study of X-ray peak broadening and optical spectrum of Cu2ZnSnS4 nanocrystals for the determination of microstructural and optical parameters. Appl. Phys. A 128, 1008 (2022). https://doi.org/10.1007/s00339-022-06137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06137-0

Keywords

Navigation