Skip to main content

Advertisement

Log in

Synthesis of Si-NbSi2 coatings on Nb substrate by hot dip silicon-plating method under the various deposition temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Si-NbSi2 composite coatings were prepared on Nb substrated by hot dip plating process. The surface and cross section microstructure, element distribution and formation mechanism of the coating were analyzed and summarized. Moreover, the surface roughness and micro-hardness of the coating were also measured. The results show that the composite coating has a dense and homogeneous structure. The outermost layer of the coating is composed of NbSi2 and pure Si phase, and the inner layer is columnar NbSi2 phase. It is noteworthy that there is a Nb5Si3 transition layer between NbSi2 layer and Nb substrate. With the increase of experimental temperature, the number of NbSi2 grains decreases gradually, while the grain size gradually increases. With the increase in the temperature, the surface roughness of the coating tends to increase. With the increase in experimental temperature, the surface roughness of the coating tends to increase, but it is still in the submicron size (Ra = 0.239–0.464 μm), and still has a relatively smooth and flat surface structure. In addition, with the increase of experimental temperature, more Si element are accumulated on the coating surface, and the micro-hardness of the coating increases from 176.55 to 373.65 MPa. The results of coating scratch test show that the critical load of coating cracks increases from 20.4 to 26.5 N with the increase of experimental temperature, and the coating bond strength increases gradually with the increase of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Sankar, V.V.S. Prasad, R.G. Baligidad, M.Z. Alam, D.K. Das, A.A. Gokhale, Microstructure, oxidation resistance and tensile properties of silicide coated Nb-alloy C-103. Mater. Sci. Eng. A. 645, 339–346 (2015). https://doi.org/10.1016/j.msea.2015.07.063

    Article  Google Scholar 

  2. Y. Pan, D.L. Pu, E.D. Yu, Structural electronic, mechanical and thermodynamic properties of Cr-Si binary silicides from first-principles investigations. Vacuum 185, 110024 (2021). https://doi.org/10.1016/j.vacuum.2020.110024

    Article  ADS  Google Scholar 

  3. Y. Pan, Structural prediction and overall performances of CrSi2 disilicides: DFT investigations. ACS Sustain. Chem. Eng. 8, 11024–11030 (2020). https://doi.org/10.1021/acssuschemeng.0c04737

    Article  Google Scholar 

  4. J.H. Perepezko, Materials science. The hotter the engine, the better. Science 326, 1068–1069 (2009). https://doi.org/10.1126/science.1179327

    Article  ADS  Google Scholar 

  5. P. Tsakiropoulos, Alloys for application at ultra-high temperatures: Nb-silicide in situ composites challenges, breakthroughs and opportunities. Prog. Mater. Sci. 123, 100714 (2022). https://doi.org/10.1016/j.pmatsci.2020.100714

    Article  Google Scholar 

  6. G. Bruzda, W. Polkowski, A. Polkowska, R. Nowak, D. Giuranno, Experimental study on the feasibility of using liquid-assisted processing in fabrication of Mo-Si-B alloys. Mater. Lett. 253, 13–17 (2019). https://doi.org/10.1016/j.matlet.2019.06.024

    Article  Google Scholar 

  7. Y. Murayama, S. Hanada, High temperature strength, fracture toughness and oxidation resistance of Nb-Si-Al-Ti multiphase alloys. Sci. Technol. Adv. Mater. 3, 145–156 (2002). https://doi.org/10.1016/S1468-6996(02)00005-0

    Article  Google Scholar 

  8. F.Q. Shen, L.H. Yu, T. Fu, Y.Y. Zhang, H. Wang, K.K. Cui, J. Wang, S. Hussain, N. Akhtar, Effect of the Al, Cr and B elements on the mechanical properties and oxidation resistance of Nb-Si based alloys: a review. Appl. Phys. A-Mater. Sci. Process. 127, 852 (2021). https://doi.org/10.1007/s00339-021-05013-7

    Article  ADS  Google Scholar 

  9. R. Ma, X.P. Guo, Effects of Mo and Zr composite additions on the microstructure, mechanical properties and oxidation resistance of multi-elemental Nb-Si based ultrahigh temperature alloys. J. Alloys Compd. 870, 159437 (2021). https://doi.org/10.1016/j.jallcom.2021.159437

    Article  Google Scholar 

  10. G. Yue, X. Guo, Y. Qiao, Microstructure and oxidation behaviors at 800 ℃ and 1250 ℃ of MoSi2/ReSi2/NbSi2 compound coating prepared by electrodeposition and then pack cementation. Ceram. Int. 45, 11739–11748 (2019). https://doi.org/10.1016/j.ceramint.2019.03.050

    Article  Google Scholar 

  11. G. Kommineni, B.R. Golla, M.Z. Alam, V.S. Prasad, Mechanical and high temperature oxidation response of Nb-18.7Si–5Ti–5Zr alloy. Mater. Chem. Phys. 290, 126615 (2022). https://doi.org/10.1016/j.matchemphys.2022.126615

    Article  Google Scholar 

  12. S. Majumdar, A. Arya, I.G. Sharma, A.K. Suri, S. Banerjee, Deposition of aluminide and silicide based protective coatings on niobium. Appl. Surf. Sci. 257, 635–640 (2010). https://doi.org/10.1016/j.apsusc.2010.07.055

    Article  ADS  Google Scholar 

  13. X.P. Guo, P. Zhang, Preparation and oxidation resistance of silicide/aluminide composite coatings on an Nb-Ti-Si based alloy. Surf. Coat. Technol. 274, 18–25 (2015). https://doi.org/10.1016/j.surfcoat.2015.04.016

    Article  Google Scholar 

  14. G.X. Sun, L.N. Jia, Y. Wang, Z.H. Jin, H. Zhang, Effects of minor B additions on tensile strength, fracture toughness and oxidation resistance of Nb-Si based alloys. Prog. Nat. Sci. Mater. Int. 32, 248–258 (2022). https://doi.org/10.1016/j.pnsc.2021.11.006

    Article  Google Scholar 

  15. J. Cheng, S. Yi, J.S. Park, Oxidation behavior of Nb-Si-B alloys with the NbSi2 coating layer formed by a pack cementation technique. Int. J. Refract. Met. Hard Mater. 41, 103–109 (2013). https://doi.org/10.1016/j.ijrmhm.2013.02.010

    Article  Google Scholar 

  16. J. Wang, Y.Y. Zhang, L.H. Yu, K.K. Cui, T. Fu, H.B. Mao, Effective separation and recovery of valuable metals from waste Ni-based batteries: a comprehensive review. Chem. Eng. J. 439, 135767 (2022). https://doi.org/10.1016/j.cej.2022.135767

    Article  Google Scholar 

  17. M. Jin, D. He, W. Shao, Z. Tan, X. Guo, Z. Zhou, G. Wang, X. Wu, L. Cui, L. Zhou, Influence of B contents on the microstructure, fracture toughness and oxidation resistance of Mo-Si-B alloys. J. Alloys Compd. 890, 161829 (2022). https://doi.org/10.1016/j.jallcom.2021.161829

    Article  Google Scholar 

  18. Z. Sun, X. Tian, X. Guo, M. Yin, X. Zhang, Oxidation resistance and mechanical characterization of silicide coatings on the Nb-18Ti-14Si-9Al alloy. Int. J. Refract. Met. Hard Mater. 69, 18–26 (2017). https://doi.org/10.1016/j.ijrmhm.2017.07.016

    Article  Google Scholar 

  19. Y.Y. Zhang, L.H. Yu, T. Fu, J. Wang, F.Q. Shen, K.K. Cui, Microstructure evolution and growth mechanism of Si-MoSi2 composite coatings on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy. J. Alloy. Compd. 894, 162403 (2022). https://doi.org/10.1016/j.jallcom.2021.162403

    Article  Google Scholar 

  20. T. Fu, K.K. Cui, Y.Y. Zhang, J. Wang, F.Q. Shen, L.H. Yu, J.M. Qie, X. Zhang, Oxidation protection of tungsten alloys for nuclear fusion applications: a comprehensive review. J. Alloy. Compd. 884, 161057 (2021). https://doi.org/10.1016/j.jallcom.2021.161057

    Article  Google Scholar 

  21. R.K. Duchaniya, U. Pandel, P. Rao, Coatings based on high entropy alloys: an overview. Mate. 44, 4467–4473 (2021). https://doi.org/10.1016/j.matpr.2020.10.720

    Article  Google Scholar 

  22. Y.Y. Zhang, K.K. Cui, T. Fu, J. Wang, F.Q. Shen, X. Zhang, L.H. Yu, Formation of MoSi2 and Si/MoSi2 coatings on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy by hot dip silicon-plating method. Ceram. Int. 47(16), 23053–23065 (2021). https://doi.org/10.1016/j.ceramint.2021.05.020

    Article  Google Scholar 

  23. T. Fu, F. Shen, Y. Zhang, L. Yu, K. Cui, J. Wang, X. Zhang, Oxidation protection of high-temperature coatings on the surface of Mo-based alloys - a review. Coatings 12(2), 141 (2022). https://doi.org/10.3390/coatings12020141

    Article  Google Scholar 

  24. Y.Y. Zhang, T. Fu, L.H. Yu, K.K. Cui, J. Wang, F.Q. Shen, X. Zhang, K.C. Zhou, Anti-corrosion coatings for protecting Nb-based alloys exposed to oxidation environments: a review. Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01222-8

    Article  Google Scholar 

  25. M. Ukegawa, A. Yamauchi, A. Kobayashi, K. Kurokawa, Interfacial reactions in Nb/NbSi2 and Nb/NbSi2-B systems. Vacuum 83, 157–160 (2008). https://doi.org/10.1016/j.vacuum.2008.04.080

    Article  ADS  Google Scholar 

  26. D.L. Pu, Y. Pan, First-principles prediction of structure and mechanical properties of TM5SiC2 ternary silicides. Vacuum 199, 110981 (2022). https://doi.org/10.1016/j.vacuum.2022.110981

    Article  ADS  Google Scholar 

  27. Y.Y. Zhang, L.H. Yu, T. Fu, J. Wang, F.Q. Shen, K.K. Cui, H. Wang, Microstructure and oxidation resistance of Si-MoSi2 ceramic coating on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy at 1500°C. Surf. Coat. Tech. 431, 128037 (2022). https://doi.org/10.1016/j.surfcoat.2021.128037

    Article  Google Scholar 

  28. K. Sala, S.K. Kashyap, R. Mitra, Effect of Ti addition on the kinetics and mechanism of non-isothermal and isothermal oxidation of Nb-Si-Mo alloys at 900°C-1200°C. Intermetallics 138, 107338 (2021). https://doi.org/10.1016/j.intermet.2021.107338

    Article  Google Scholar 

  29. J.K. Yoon, G.H. Kim, Accelerated oxidation behavior of NbSi2 coating grown on Nb substrate at 600–900 °C. Corros. Sci. 141, 97–108 (2018). https://doi.org/10.1016/j.corsci.2015.02.035

    Article  Google Scholar 

  30. S. Majumdar, J. Kishor, B. Paul, R.C. Hubli, J.K. Chakravartty, Isothermal oxidation behavior and growth kinetics of silicide coatings formed on Nb-1Zr-0.1C alloy. Corros. Sci. 95, 100–109 (2015). https://doi.org/10.1016/j.corsci.2015.02.035

    Article  Google Scholar 

  31. L. Sun, Q.G. Fu, J. Sun, Effect of SiO2 barrier scale prepared by pre-oxidation on hot corrosion behavior of MoSi2-based coating on Nb alloy. Corros. Sci. 176, 109051 (2020). https://doi.org/10.1016/j.corsci.2020.109051

    Article  Google Scholar 

  32. Y.Y. Zhang, T. Fu, L.H. Yu, F.Q. Shen, J. Wang, K.K. Cui, Improving oxidation resistance of TZM alloy by deposited Si-MoSi2 composite coating with high silicon concentration. Ceram. Int. 48(14), 20895–20904 (2022). https://doi.org/10.1016/j.ceramint.2022.04.080

    Article  Google Scholar 

  33. S.P. Wang, L. Zhou, C.J. Li, Z.X. Li, H.Z. Li, L.J. Yang, Morphology of composite coatings formed on Mo1 substrate using hot-dip aluminising and micro-arc oxidation techniques. Appl. Surf. Sci. 508, 144761 (2020). https://doi.org/10.1016/j.apsusc.2019.144761

    Article  Google Scholar 

  34. Y.Y. Zhang, T. Fu, K.K. Cui, F.Q. Shen, J. Wang, L.H. Yu, H.B. Mao, Evolution of surface morphology, roughness and texture of tungsten disilicide coatings on tungsten substrate. Vacuum 191, 110297 (2021). https://doi.org/10.1016/j.vacuum.2021.110297

    Article  ADS  Google Scholar 

  35. J.J. Zang, P. Song, J. Feng, X.P. Xiong, R. Chen, G.L. Liu, J.S. Lu, Oxidation behaviour of the nickel-based superalloy DZ125 hot-dipped with Al coatings doped by Si. Corros. Sci. 112, 170–179 (2016). https://doi.org/10.1016/j.corsci.2016.07.020

    Article  Google Scholar 

  36. Y.Y. Zhang, K.K. Cui, T. Fu, J. Wang, J.M. Qie, X. Zhang, Synthesis WSi2 coating on W substrate by HDS method with various deposition times. Appl. Surf. Sci. 511, 145551 (2020). https://doi.org/10.1016/j.apsusc.2020.145551

    Article  Google Scholar 

  37. Y. Li, J.H. Yang, Z.J. Pan, W.S. Tong, Nanoscale pore structure and mechanical property analysis of coal: an insight combining AFM and SEM images. Fuel 260, 116352 (2020). https://doi.org/10.1016/j.fuel.2019.116352

    Article  Google Scholar 

  38. T. Fu, Y.Y. Zhang, F.Q. Shen, K.K. Cui, L.U. Chen, Microstructure and oxidation behavior of Si-MoSi2 coating deposited on Mo substrate at 600 °C and 900 °C in static air. Mater Charact. 192, 112192 (2022). https://doi.org/10.1016/j.matchar.2022.112192

    Article  Google Scholar 

  39. Y.Y. Zhang, K.K. Cui, Q.J. Gao, S. Hussain, Y. Lv, Investigation of morphology and texture properties of WSi2 coatings on W substrate based on contact-mode AFM and EBSD. Surf. Coat. Tech. 396, 125966 (2020). https://doi.org/10.1016/j.surfcoat.2020.125966

    Article  Google Scholar 

  40. W.R. Feng, D.R. Yan, I. Jin, G.L. He, G.L. Zhang, W.C. Chen, S.Y. Gu, Microhardness and toughness of the TiN coating prepared by reactive plasma spraying. Appl. Surf. Sci. 243, 204–213 (2005). https://doi.org/10.1016/j.apsusc.2004.09.064

    Article  ADS  Google Scholar 

  41. K.K. Cui, T. Fu, Y.Y. Zhang, J. Wang, H.B. Mao, T.B. Tan, Microstructure and mechanical properties of CaAl12O19 reinforced Al2O3-Cr2O3 composites. J. Eur. Ceram. Soc. 41(15), 7935–7945 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.08.024

    Article  Google Scholar 

  42. J. He, B.G. Zhang, W.L. Li, The dependence of the electron beam remelting parameters on the surface residual stress and hardness of NbSi2 coatings on niobium alloys. J. Alloy. Compd. 577, 436–438 (2013). https://doi.org/10.1016/j.jallcom.2013.06.120

    Article  Google Scholar 

  43. N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. J. Mater. Process. Technol. 143–144, 481–485 (2003). https://doi.org/10.1016/S0924-0136(03)00300-5

    Article  Google Scholar 

  44. L.S. Qiu, X.D. Zhu, S. Lu, G.Y. He, K.W. Xu, Quantitative evaluation of bonding strength for hard coatings by interfacial fatigue strength under cyclic indentation. Surf. Coat. Technol. 315, 303–313 (2017). https://doi.org/10.1016/j.surfcoat.2017.02.045

    Article  Google Scholar 

  45. S. Sveen, J.M. Andersson, R. M’Saoubi, M. Olsson, Scratch adhesion characteristics of PVD TiAlN deposited on high speed steel, cemented carbide and PCBN substrates. Wear 308, 133–141 (2013). https://doi.org/10.1016/j.wear.2013.08.025

    Article  Google Scholar 

  46. H.Q. Bai, L.S. Zhong, L. Kang, W.J. Zhuang, Z.L. Lv, Y.H. Xu, Fabrication of a novel molybdenum carbide composite coating with double-layer structure on cast iron via in situ solid-phase diffusion. Mater. Charact. 183, 111613 (2022). https://doi.org/10.1016/j.matchar.2021.111613

    Article  Google Scholar 

  47. J. Pujante, M. Vilaseca, D. Casellas, M.D. Riera, High temperature scratch testing of hard PVD coatings deposited on surface treated tool steel. Surf. Coat. Technol. 254, 352–357 (2014). https://doi.org/10.1016/j.surfcoat.2014.06.040

    Article  Google Scholar 

  48. R. Akhter, Z.F. Zhou, Z.H. Xie, P. Munroe, Influence of substrate bias on the scratch, wear and indentation response of TiSiN nanocomposite coatings. Surf. Coat. Technol. 425, 127687 (2021). https://doi.org/10.1016/j.surfcoat.2021.127687

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Anhui Province Science Foundation for Excellent Young Scholars (No.2108085Y19) and the National Natural Science Foundation of China (No.51604049).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. YYZ performed the Resources, Writing-Review & Editing, Supervision, Data Curation. FQS and TF performed the SEM, EDS, and LSCM measurements; TF and QJG performed coating depositions and image processing; LYC and QJG performed the cleaning, cutting and polishing of samples. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yingyi Zhang or Qiangjian Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Fu, T., Zhang, Y. et al. Synthesis of Si-NbSi2 coatings on Nb substrate by hot dip silicon-plating method under the various deposition temperatures. Appl. Phys. A 128, 984 (2022). https://doi.org/10.1007/s00339-022-06129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06129-0

Keywords

Navigation