Skip to main content
Log in

Phase-field simulation of phase separation coupled with thermodynamic databases in FeNiCrCoCu high-entropy alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The simulation of microstructural evolution in multi-principal element alloys is still challenging although for alloy development it is of high importance. In the work, a phase-field model linked with CALPHAD thermodynamic databases is utilized to explore the microstructural evolution during diffusion-controlled phase separation in the Fe–Ni–Cr–Co–Cu high-entropy alloy system with elastic lattice misfit. The compositional fluctuation and temperature effect on the elemental distribution and the kinetics of Cu-enriched phase formation are systematically investigated. The simulated results show that the Cu-enriched phase has a complicated core–shell structure consisting of a Cu-enriched core and a Ni/Fe shell. The latter as a buffer layer possesses retardant effect on the formation of Cu-enriched precipitates. Furthermore, the high Ni/Fe concentration delays the phase separation, growth and coarsening of the Cu-enriched phase, leading to particle refinement and the increasing width of the Ni/Fe shell. Besides, high temperature accelerates the phase separation and simultaneously promotes the growth and coarsening of nanoscale Cu-enriched precipitates. The present work expands the knowledge of phase separation in multicomponent alloy systems and provides insights to optimize material microstructure and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004)

    Google Scholar 

  2. B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004)

    Google Scholar 

  3. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Google Scholar 

  4. Z. Li, S. Zhao, R.O. Ritchie, M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater Sci. 102, 296–345 (2019)

    Google Scholar 

  5. G. Laplanche, A. Kostka, O. Horst, G. Eggeler, E. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152–163 (2016)

    Google Scholar 

  6. L. Zhang, J. Fan, D. Liu, M. Zhang, P. Yu, Q. Jing, M. Ma, P. Liaw, G. Li, R. Liu, The microstructural evolution and hardness of the equiatomic CoCrCuFeNi high-entropy alloy in the semi-solid state. J. Alloy. Compd. 745, 75–83 (2018)

    Google Scholar 

  7. X. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T. Nieh, C. Liu, M. Chen, Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0 5 high-entropy alloy. Acta. Mater. 84, 145–152 (2015)

    Google Scholar 

  8. G. Qin, Z. Li, R. Chen, H. Zheng, C. Fan, L. Wang, Y. Su, H. Ding, J. Guo, H. Fu, CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. J. Mater. Res. 34, 1011–1020 (2019)

    Google Scholar 

  9. A. Verma, P. Tarate, A. Abhyankar, M. Mohape, D. Gowtam, V. Deshmukh, T. Shanmugasundaram, High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scripta Mater. 161, 28–31 (2019)

    Google Scholar 

  10. K. Lin, C. Wei, Y. He, C. Li, P. Zhang, J. Li, J. Wang, Formation of core-shell structure in immiscible CoCrCuFe1 5Ni0 5 high-entropy alloy. Mater. Lett. (2022). https://doi.org/10.1016/j.matlet.2022.132452

    Article  Google Scholar 

  11. Y.K. Kim, B.J. Lee, S.-K. Hong, S.I. Hong, Strengthening and fracture of deformation-processed dual fcc-phase CoCrFeCuNi and CoCrFeCu1 71Ni high entropy alloys. Mater. Sci. Eng., A 781, 1392 (2020)

    Google Scholar 

  12. C.-M. Lin, H.-L. Tsai, Effect of annealing treatment on microstructure and properties of high-entropy FeCoNiCrCu0. 5 alloy. Materials Chem Phys 128, 50–56 (2011)

    Google Scholar 

  13. C.-M. Lin, H.-L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu0. 5 alloy at elevated temperature. J Alloys Compounds. 489, 30–35 (2010)

    Google Scholar 

  14. S.M. Oh, S.I. Hong, Microstructural stability and mechanical properties of equiatomic CoCrCuFeNi, CrCuFeMnNi, CoCrCuFeMn alloys. Mater. Chem. Phys. 210, 120–125 (2018)

    Google Scholar 

  15. H. Zheng, R. Chen, G. Qin, X. Li, Y. Su, H. Ding, J. Guo, H. Fu, Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification. J. Mater. Sci. Technol. 38, 19–27 (2020)

    Google Scholar 

  16. C. Du, L. Hu, Q. Pan, K. Chen, P. Zhou, G. Wang, Effect of Cu on the strengthening and embrittling of an FeCoNiCr-xCu HEA. Mater. Sci. Eng. A 832, 142413 (2022)

    Google Scholar 

  17. K. Kadirvel, Z. Kloenne, J.K. Jensen, H. Fraser, Y. Wang, Phase-field modelling of transformation pathways and microstructural evolution in multi-principal element alloys. Appl. Phys. Lett. 119, 171905 (2021)

    Google Scholar 

  18. N. Shah, M. Rahul, G. Phanikumar, Accelerated design of eutectic high entropy alloys by ICME approach. Metall. and Mater. Trans. A. 52, 1574–1580 (2021)

    Google Scholar 

  19. Y. Sun, Y. Zhao, B. Zhao, Z. Guo, X. Tian, W. Yang, H. Hou, Multi-component phase-field simulation of microstructural evolution and elemental distribution in Fe–Cu–Mn–Ni–Al alloy. Calphad 69, 101759 (2020)

    Google Scholar 

  20. A.M. Jokisaari, P. Voorhees, J.E. Guyer, J. Warren, O. Heinonen, Benchmark problems for numerical implementations of phase field models. Comput. Mater. Sci. 126, 139–151 (2017)

    Google Scholar 

  21. A. Choudhury, M. Kellner, B. Nestler, A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases. Curr. Opin. Solid State Mater. Sci. 19, 287–300 (2015)

    Google Scholar 

  22. J. Li, Z. Li, Q. Wang, C. Dong, P. Liaw, Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys. Acta Mater. 197, 10–19 (2020)

    Google Scholar 

  23. D. Schwen, C. Jiang, L. Aagesen, A sublattice phase-field model for direct CALPHAD database coupling. Comput. Mater. Sci. 195, 110466 (2021)

    Google Scholar 

  24. Y.A. Coutinho, N. Vervliet, L. De Lathauwer, N. Moelans, Combining thermodynamics with tensor completion techniques to enable multicomponent microstructure prediction. npj. Comput. Mater. 6, 1–11 (2020)

    Google Scholar 

  25. S. Chatterjee, N. Moelans, A grand-potential based phase-field approach for simulating growth of intermetallic phases in multicomponent alloy systems. Acta Mater. 206, 116630 (2021)

    Google Scholar 

  26. X. Zuo, Y. Coutinho, S. Chatterjee, N. Moelans, Phase field simulations of FCC to BCC phase transformation in (Al) CrFeNi medium entropy alloys. Materials Theory 6, 1–24 (2022)

    Google Scholar 

  27. N. Valizadeh, T. Rabczuk, Isogeometric analysis of hydrodynamics of vesicles using a monolithic phase-field approach. Comput. Methods Appl. Mech. Eng. 388, 114191 (2022)

    MathSciNet  MATH  Google Scholar 

  28. J. López, N. Valizadeh, T. Rabczuk, An isogeometric phase–field based shape and topology optimization for flexoelectric structures. Comput. Methods Appl. Mech. Eng. 391, 114564 (2022)

    MathSciNet  MATH  Google Scholar 

  29. M. Ashour, N. Valizadeh, T. Rabczuk, Isogeometric analysis for a phase-field constrained optimization problem of morphological evolution of vesicles in electrical fields. Comput. Methods Appl. Mech. Eng. 377, 113669 (2021)

    MathSciNet  MATH  Google Scholar 

  30. F. Amiri, S. Ziaei-Rad, N. Valizadeh, T. Rabczuk, On the use of local maximum entropy approximants for Cahn-Hilliard phase-field models in 2D domains and on surfaces. Comput. Methods Appl. Mech. Eng. 346, 1–24 (2019)

    MathSciNet  MATH  Google Scholar 

  31. X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233–238 (2012)

    Google Scholar 

  32. B. Li, L. Zhang, C. Li, Q. Li, J. Chen, G. Shu, Y. Weng, B. Xu, S. Hu, W. Liu, The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys. J. Nucl. Mater. 507, 59–67 (2018)

    Google Scholar 

  33. N. Saunders, A.P. Miodownik, CALPHAD (calculation of phase diagrams): a comprehensive guide (Elsevier, Amsterdam, 1998)

    Google Scholar 

  34. J. Zhu, L.-Q. Chen, J. Shen, V. Tikare, Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: Application of a semi-implicit Fourier spectral method. Phys. Rev. E 60, 3564 (1999)

    Google Scholar 

  35. T. He, Y. Ji, Y. Qi, L.-Q. Chen, M. Feng, Stress-dependence of dislocation dissociation, nucleation and annihilation in elastically anisotropic Cu. Int. J. Plast 138, 102927 (2021)

    Google Scholar 

  36. T. Koyama, H. Onodera, Phase-field simulation of phase decomposition in Fe− Cr− Co alloy under an external magnetic field. Met. Mater. Int. 10, 321–326 (2004)

    Google Scholar 

  37. T. Koyama, H. Onodera, Computer simulation of phase decomposition in Fe–Cu–Mn–Ni quaternary alloy based on the phase-field method. Mater. Trans. 46, 1187–1192 (2005)

    Google Scholar 

  38. S. Guo, C. Ng, Z. Wang, C. Liu, Solid solutioning in equiatomic alloys: limit set by topological instability. J. Alloy. Compd. 583, 410–413 (2014)

    Google Scholar 

  39. C. Li, R. Dedoncker, L. Li, F. Sedghgooya, F. Zighem, V. Ji, D. Depla, P. Djemia, D. Faurie, Mechanical properties of CoCrCuFeNi multi-principal element alloy thin films on Kapton substrates. Surf. Coat. Technol. 402, 126474 (2020)

    Google Scholar 

  40. Q. Shen, X. Xiong, T. Li, H. Chen, Y. Cheng, W. Liu, Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe-Cu alloy. Mater. Sci. Eng., A 723, 279–286 (2018)

    Google Scholar 

  41. S. Shu, P.B. Wells, N. Almirall, G.R. Odette, D.D. Morgan, Thermodynamics and kinetics of core-shell versus appendage co-precipitation morphologies: an example in the Fe-Cu-Mn-Ni-Si system. Acta Mater. 157, 298–306 (2018)

    Google Scholar 

  42. C. Kuehmann, P. Voorhees, Ostwald ripening in ternary alloys. Metall. and Mater. Trans. A. 27, 937–943 (1996)

    Google Scholar 

  43. Y. Zhao, H. Chen, Z. Lu, T. Nieh, Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr) 94Ti2Al4 high-entropy alloy. Acta Mater. 147, 184–194 (2018)

    Google Scholar 

  44. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Google Scholar 

  45. C. Wagner, Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung), Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische. Chemie 65, 581–591 (1961)

    Google Scholar 

  46. K.E. Yoon, R.D. Noebe, D.N. Seidman, Effects of rhenium addition on the temporal evolution of the nanostructure and chemistry of a model Ni–Cr–Al superalloy I: experimental observations. Acta Mater. 55, 1145–1157 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors would like to deeply appreciate the support from the National Natural Sciences Foundation of China (U2067220 and 82000980) and the LingChuang Research Project of China National Nuclear Corporation and the Young Talent Project of China National Nuclear Corporation.

Author information

Authors and Affiliations

Authors

Contributions

TH contributed to conceptualization, methodology, writing, reviewing and editing. XC was involved in conceptualization, reviewing and editing. YQ contributed to conceptualization, methodology, reviewing and editing. MF was involved in conceptualization, methodology, funding acquisition and supervision.

Corresponding authors

Correspondence to Yuming Qi or Miaolin Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1: (PDF 268 KB)

Appendix

Appendix

See Table 3.

Table 3 Interaction coefficients \(a_{i}\) (units: J/mol) in Eq. (8) for different temperatures

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Chen, X., Qi, Y. et al. Phase-field simulation of phase separation coupled with thermodynamic databases in FeNiCrCoCu high-entropy alloys. Appl. Phys. A 128, 987 (2022). https://doi.org/10.1007/s00339-022-06101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06101-y

Keywords

Navigation