Skip to main content

Advertisement

Log in

Application of a graphene-oxide-modified surface plasmon resonance biosensor in dengue E-protein detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The sensitization effect of graphene oxide (GO) on surface plasmon resonance (SPR) chip sensors has been widely reported. However, the absence of a fixed value for selecting the GO solution concentration is a significant limitation for reproducing the experiments reported in the literature. In this study, linear functionalized polyethylene glycol (SH-PEG-NH2) is used to modify the surfaces of bare gold chips, using flow and immersion methods to produce GO-film-covered SPR sensor chips. Deionized water and phosphate buffered saline are applied as refractive index variants to compare the changes in sensor performance following chip modification, and to determine the optimal concentrations of GO solution under the respective modification methods. Using a sensor chip modified with the optimal GO concentration enhances the ability of a 10-year-old device to detect the dengue virus (DENV) E-protein by 357% and enables the detection of antibody protein concentrations as low as 62.5 ng/mL. Satisfactory results were also obtained using a DENV-positive serum to verify the chip usage. The results of this study are of significance for future efforts involving the rapid preparation of accurate and low-cost GO-SPR biosensor chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: details of all experiments have been stated in the experimental section and all data have been presented in the paper figures. First-hand data are available upon contacting the corresponding author or the first author.]

References

  1. A. Dhal, T. Kalyani, S. Ghorai, N.K. Sahu, S.K. Jana, Sens. Int. 1, 100030 (2020)

    Article  Google Scholar 

  2. H.B. Wang, T. Du, W.G. Li, J.H. Zhao, Z. Yang, Q.H. Mo, J. Virol. Methods. 276, 113793 (2020). https://doi.org/10.1016/j.jviromet.2019.113793

    Article  Google Scholar 

  3. E.M. Korhonen, E. Huhtamo, A.M.K. Virtala, A. Kantele, O. Vapalahti, J. Clin. Virol. 61, 353–358 (2014). https://doi.org/10.1016/j.jcv.2014.08.021

    Article  Google Scholar 

  4. N.W. Anderson, D.J. Jespersen, L. Rollins, B. Seaton, H.E. Prince, E.S. Theel, Diagn. Microbiol. Infect. Dis. 79, 194–197 (2014). https://doi.org/10.1016/j.diagmicrobio.2014.02.001

    Article  Google Scholar 

  5. A. Sangili, T. Kalyani, S.M. Chen, K. Rajendran, S.K. Jana, Label-free electrochemical immunosensor based on l-cysteine-functionalized AuNP on reduced graphene oxide for the detection of dengue virus E-protein in dengue blood serum. Composit Part B (2022). https://doi.org/10.1016/j.compositesb.2022.109876

    Article  Google Scholar 

  6. C.C. Santos, P.C.M. Santos, K.L.S. Rocha, R.L. Thomasini, D.B. de Oliveira, D.L. FrancoLF, A new tool for dengue virus diagnosis: optimization and detection of anti-NS1 antibodies in serum samples by impedimetric transducers. Ferreira Microchem. J. 154, 104554 (2020)

    Google Scholar 

  7. Y.M. Kamil, M.H.A. Bakar, M.A. Mustapa, M.H. Yaacob, N.H.Z. Abidin, A. Syahir, H.J. Lee, M.A. Mahdi, Sens. Actuators B. 257, 820–828 (2018)

    Article  Google Scholar 

  8. V. Subramaniyan, R. Venkatachalam, Asian Pac. J. Trop. Dis. 5, S33–S41 (2015). https://doi.org/10.1016/S2222-1808(15)60852-0

    Article  Google Scholar 

  9. N.A.S. Omar, Y.W. Fen, J. Abdullah, C.E.N.C.E. Chik, M.A. Mahdi, Sens. Bio Sens. Res. 20, 16–21 (2018). https://doi.org/10.1016/j.sbsr.2018.06.001

    Article  Google Scholar 

  10. E. Young, R.H. Carnahan, D.V. Andrade, N. Kose, R.S. Nargi, E.J. Fritch, J.E. Munt, M.P. Doyle, L. White, T.J. Baric, M. Stoops, A. DeSilva, L.V. Tse, D.R. Martinez, D. Zhu, S. Metz, M.P. Wong, D.A. Espinosa, M. Montoya, S.B. Biering, S. Sukulpolvi-Petty, G. Kuan, A. Balmaseda, M.S. Diamond, E. Harris, J.E. Crowe Jr., R.S. Baric, Identification of dengue virus serotype 3 specific antigenic sites targeted by neutralizing human antibodies. Cell Host Microbe (2020). https://doi.org/10.1016/j.chom.2020.04.007

    Article  Google Scholar 

  11. M.Z. Islam, M.M. Islam, A. Asraf, Inform. Med. Unlocked. 20, 100412 (2020). https://doi.org/10.1016/j.imu.2020.100412

    Article  Google Scholar 

  12. F.A. Rantam Purwati, S. Soegijanto, H. Susilowati, K. Sudiana, E. Hendrianto Soetjipto, Analysis of recombinant, multivalent dengue virus containing envelope (E) proteins from serotypes-1, -3 and -4 and expressed in baculovirus. Trials Vaccinology. 4, e75–e79 (2015)

    Article  Google Scholar 

  13. C. Martínez-Cuellar, D. Lovera, F. Galeano, L. Gatti, S. Arbo, Non-structural protein 1 (NS1) of dengue virus detection correlates with severity in primary but not in secondary dengue infection. J. Clin. Virol. (2020). https://doi.org/10.1016/j.jcv.2020.104259

    Article  Google Scholar 

  14. N.A.S. Omar, Y.W. Fen, J. Abdullah, M.H.M. Zaid, W.M.E.M.M. Daniyal, M.A. Mahdi, Opt. Laser Technol. 114, 204–208 (2019). https://doi.org/10.1016/j.optlastec.2019.01.038

    Article  ADS  Google Scholar 

  15. D. Granger, Y.S. Leo, L.K. Lee, E.S. Theel, Diagn. Microbiol. Infect. Dis. 88, 120–124 (2017). https://doi.org/10.1016/j.diagmicrobio.2017.03.015

    Article  Google Scholar 

  16. S.C. Lai, Y.Y. Huang, P.Y. Shu, S.F. Chang, P.S. Hsieh, J.J. Wey, M.H. Tsai, R.J. Ben, Y.M. Hsu, Y.C. Fang, M.L. Hsiao, C.C. Lin, J. Clin. Microbiol. 57, e00221-e319 (2019). https://doi.org/10.1128/JCM.00221-19

    Article  Google Scholar 

  17. T.P. Ou, C. Yun, H. Auerswald, S. In, R. Leang, R. Huy, R. Choeung, P. Dussart, V. Duong, J. Virol. Methods. 282, 113862 (2020). https://doi.org/10.1016/j.jviromet.2020.113862

    Article  Google Scholar 

  18. A.S. Kushwaha, A. Kumar, R. Kumar, M. Srivastava, S.K. Srivastava, Optik 172, 697–707 (2018). https://doi.org/10.1016/j.ijleo.2018.07.066

    Article  ADS  Google Scholar 

  19. A. Widoretno, B.E. Sjahrurachman, K. Dewi, D.K. Lischer, D. Pratami, M. Flamandita, Sahlan, Saudi. J. Biol. Sci. 27, 1931–1937 (2020). https://doi.org/10.1016/j.sjbs.2020.06.018

    Article  Google Scholar 

  20. V. Yesudasu, H.S. Pradhan, R.J. Pandya, Heliyon. 7, e06321 (2021). https://doi.org/10.1016/j.heliyon.2021.e06321

    Article  Google Scholar 

  21. C. Rizal, S. Pisana, I. Hrvoic, Photonics. 5, 15 (2018). https://doi.org/10.3390/photonics5030015

    Article  Google Scholar 

  22. K. Xu, Y. Fujita, Y. Lu, S. Honda, M. Shiomi, T. Arie, S. Akita, K. Takei, Adv. Mater. 33, 2008701 (2021). https://doi.org/10.1002/adma.202008701

    Article  Google Scholar 

  23. W. Heng, G. Yang, W.S. Kim, K. Xu, Bio-Des. Manuf. 5, 64–84 (2022). https://doi.org/10.1007/s42242-021-00171-2

    Article  Google Scholar 

  24. T.B.A. Akib, S.F. Mou, M.M. Rahman, M.M. Rana, M.R. Islam, I.M. Mehedi, M.A.P. Mahmud, A.Z. Kouzani, Sensors. 21, 3491 (2021). https://doi.org/10.3390/s21103491

    Article  ADS  Google Scholar 

  25. HY Cai, D Cui, L Zhang. 2012 Proc. 12th IEEE Int. Conf. Nanotechnol. (IEEE-NANO) IEEE, Publications, Birmingham, NY

  26. S. Chen, S.O. Oyadiji, The processing and analysis of graphene and the strength enhancement effect of graphene-based filler materials: a review. Mater. Today Phys. 15, 100257 (2020)

    Article  Google Scholar 

  27. E. Khosravian, H.R. Mashayekhi, A. Farmani, A.E.U. Int, J. Electron. Commun. 127, 153472 (2020). https://doi.org/10.1016/j.aeue.2020.153472

    Article  Google Scholar 

  28. N. Chiu, T. Lin, C.T. Kuo, Sens. Actuators B. 265, 264–272 (2018). https://doi.org/10.1016/j.snb.2018.03.070

    Article  Google Scholar 

  29. Q. Wang, B. Wang, Opt. Laser Technol. 107, 210–215 (2018). https://doi.org/10.1016/j.optlastec.2018.05.006

    Article  ADS  Google Scholar 

  30. V.A. Nebol’sin, V. Galstyan, Y.E. Silina, Graphene oxide and its chemical nature: multi-stage interactions between the oxygen and grapheme. Surf. Interfaces. 21, 100763 (2020)

    Article  Google Scholar 

  31. C.S.T. Foadin, F.T. Tchangnwa Nya, A. Malloum, J. Conradie, Enhancement of absorption capacity, optical and non-linear optical properties of graphene oxide nanosheet. J. Mol. Graph. Model. 111, 108075 (2022)

    Article  Google Scholar 

  32. C. Tyagi, A. Tripathi, A.B. Dey, D.K. Avasthi, Structural changes induced in graphene oxide film by low energy ion beam irradiation. Radiat. Phys. Chem. 192, 109923 (2022)

    Article  Google Scholar 

  33. A. Shalabney, I. Abdulhalim, Sens. Actuators A. 159, 24–32 (2010). https://doi.org/10.1016/j.sna.2010.02.005

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (81703271), National Key Research and Development Program of China (2018YFC0809200), Guangdong Science and Technology Foundation (2021A1515220084, 2020B1111160001), Shenzhen Science and Technology Foundation (ZDSYS20210623092001003, GJHZ20200731095604013, JSGG20200807171602031, 201906133000069, SGLH20180625171602058) and the Open Project of Key Laboratory of Tropical Disease Control of the Ministry of Education (Sun Yat-sen University) (2019kfkt06).

Author information

Authors and Affiliations

Authors

Contributions

LZ, RZ, and LC: contributed to experiments and analysis of their results. TL, DG, JH and SZ: contributed to calculations and analysis of the results. All authors participated in the discussion of results and preparation of the manuscript.

Corresponding authors

Correspondence to Jian’an He or Sixiang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, R., Cui, L. et al. Application of a graphene-oxide-modified surface plasmon resonance biosensor in dengue E-protein detection. Appl. Phys. A 128, 1019 (2022). https://doi.org/10.1007/s00339-022-06085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06085-9

Keywords

Navigation