Skip to main content
Log in

Effect of Au concentration on electrophysical properties of nanostructured (Ni80Fe20)xAu1-x thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrophysical properties of nanostructured (Ni80Fe20)xAu1-x thin films containing from 20 to 52 at.% of Au were investigated. All samples are characterized by metallic behavior upon annealing within the temperature range from 300 to 750 K. It was demonstrated that the resistivity is sensitive to the composition of the samples. Their value for the sample with 20 at.% of Au differs five times in comparison with the sample with 52 at.% of Au. The slope of the temperature dependence of resistivity depends on the composition of the samples too. This is caused by the effectiveness of electron–phonon interaction and peculiarities of the morphology of the samples. The temperature coefficient of resistance takes a positive value, has an order of 10−3 K−1, and grows with an increase of Au content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Roa, M. Sirena, Size effects on the optimization of the mechanical resistance and the electrical conductivity of Cu thin films. Mater. Today. Commun. 28, 102572 (2021). https://doi.org/10.1016/j.mtcomm.2021.102572

    Article  Google Scholar 

  2. G. Durak Yüzüak, E. Yüzüak, I. Ennen, A. Hütten, Thickness induced magnetic anisotropic properties of Tb-Fe-Co thin films. Curr. Appl. Phys. 29, 33–38 (2021). https://doi.org/10.1016/j.cap.2021.05.014

    Article  ADS  Google Scholar 

  3. P. Marquez, D. Alburquenque, F. Celis, R.M. Freire, J. Escrig, Structural, morphological and magnetic properties of iron oxide thin films obtained by atomic layer deposition as a function of their thickness. J. Magn. Magn. Mater. 530, 167914 (2021). https://doi.org/10.1016/j.jmmm.2021.167914

    Article  Google Scholar 

  4. I.M. Pazukha, Y.O. Shkurdoda, A.M. Chornous, L.V. Dekhtyaruk, Magnetic and magnetoresistive properties of nanocomposites based on Co and SiO. Int. J. Modern Phys. B. 33, 1950113 (2019). https://doi.org/10.1142/S0217979219501133

    Article  ADS  Google Scholar 

  5. V.V. Hiep, N. Chau, D.M. Hong, N.H. Luong, High coercivity and giant magnetoresistance of CoAg, CoCu granular films. J. Magn. Magn. Mater. 310, 2524–2526 (2007). https://doi.org/10.1016/j.jmmm.2006.11.136

    Article  ADS  Google Scholar 

  6. S.K. Ghosh, A. Dogra, C. Srivastava, S.K. Gupta, Effect of annealing and additive agent on magnetoresistance properties of pulse plated Cu–Co nano-granular alloys. J. Alloys Compd. 504, 452–456 (2010). https://doi.org/10.1016/j.jallcom.2010.06.002

    Article  Google Scholar 

  7. M. Ishikawa, H. Enomoto, N. Mikamoto, T. Nakamura, M. Matsuoka, C. Iwakura, Preparation of thin film resistors with low resistivity and low TCR by heat treatment of multilayered Cu/Ni deposits. Surf. Coat. Technol. 110, 121–127 (1998). https://doi.org/10.1016/S0257-8972(98)00682-3

    Article  Google Scholar 

  8. N.-C. Chuang, J.-T. Lin, H.-R. Chen, TCR control of Ni-Cr resistive film deposited by DC magnetron sputtering. Vacuum 119, 200–203 (2015). https://doi.org/10.1016/j.vacuum.2015.05.026

    Article  ADS  Google Scholar 

  9. T.N. Koltunowicz, V. Bondariev, L.V. Odnodvorets, S.I. Protsenko, M. Shumakova, O.P. Tkach, Electrophysical properties of granular film alloys. Vacuum 164, 165–169 (2019). https://doi.org/10.1016/j.vacuum.2019.03.021

    Article  ADS  Google Scholar 

  10. D.I. Saltykov, Yu.O. Shkurdoda, IYu. Protsenko, Structural-phase state and electrical conductivity of film structures based on FCC phase of Fe-Co and Cu alloy. J. Nano- Electron. Phys. 10(3), 03024 (2018). https://doi.org/10.21272/jnep.10(3).03024

    Article  Google Scholar 

  11. B. Dieny, S.R. Teixiera, B. Rodmacq, C. Cowache, S. Auffret, O. Redon, J. Pierre, Structural, magnetic and transport properties of NiFexAg(1–x) heterogeneous alloys. J. Magn. Magn. Mater. 130, 197–215 (1994). https://doi.org/10.1016/0304-8853(94)90675-0

    Article  ADS  Google Scholar 

  12. M.A. Qader, A. Vishina, L. Yu, C. Garcia, R.K. Singh, N.D. Rizzo, M. Huang, R. Chamberlin, K.D. Belashchenko, M. van Schilfgaarde, N. Newman, The magnetic, electrical and structural properties of copper-Permalloy alloys. J. Magn. Magn. Mater. 442, 45–52 (2017). https://doi.org/10.1016/j.jmmm.2017.06.081

    Article  ADS  Google Scholar 

  13. D. Kumar, S. Chaudhary, D.K. Pandya, Surface scattering dominated magnetotransport for improved quantitative estimation of particle size in Ag100-xCox nanogranular films. J. Magn. Magn. Mater. 370, 127–133 (2014). https://doi.org/10.1016/j.jmmm.2014.06.067

    Article  ADS  Google Scholar 

  14. I.O. Shpetnyi, IYu. Protsenko, S.I. Vorobiov, V.I. Grebinaha, L. Satrapinskyy, T. Lucinski, Influence of composition on the structural-phase state, electrophysical and magnetotransport properties of alloy thin films based on Co and Cu. Vacuum 187, 110141 (2021). https://doi.org/10.1016/j.vacuum.2021.110141

    Article  ADS  Google Scholar 

  15. M. Di Ventra, Electric Transport in Nanoscale Systems (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  16. S. Dutta, K. Sankaran, K. Moors, G. Pourtois, S. Van Elshocht, J. Bommels, W. Vandervorst, Z. Tokei, C. Adelmann, Thickness dependence of the resistivity of platinum-group metal thin films. J. Appl. Phys. 122(2), 025107 (2017). https://doi.org/10.1063/1.4992089

    Article  ADS  Google Scholar 

  17. Y.-T. Chen, S.H. Jiun-Yi Tseng, T.S.S. Lin, Effect of grain size on optical and electrical properties of Ni80Fe20 thin films. J. Magn. Magn. Mater. 360, 87–91 (2014). https://doi.org/10.1016/j.jmmm.2014.02.005

    Article  ADS  Google Scholar 

  18. O.V. Pylypenko, I.M. Pazukha, A.S. Ovrutskyi, L.V. Odnodvorets, Electrophysical and magnetoresistive properties of thin film alloy Ni80Fe20. J. Nano Electon. Phys. 8, 03022 (2016). https://doi.org/10.21272/jnep.8(3).03022

    Article  Google Scholar 

  19. T.H. Gilani, Dian Rabchuk, electrical resistivity of gold thin film as a function of film thickness. Canadian J. Phys. 96, 272 (2018). https://doi.org/10.1139/cjp-2017-0484

    Article  ADS  Google Scholar 

  20. G. Nahrwold, J.M. Scholtyssek, S. Motl-Ziegler, O. Albrecht, U. Merkt, G. Meier, Structural, magnetic, and transport properties of permalloy for spintronic experiments. J. Appl. Phys. 108, 013907 (2010). https://doi.org/10.1063/1.3431384

    Article  ADS  Google Scholar 

  21. C.R. Tellier, A.J. Tosser, Size effects in thin films (Elsevier, New York, 1982), p.310

    Google Scholar 

  22. A.I. Oliva, J.M. Lugo, R.A. Gurubel-Gonzalez, R.J. Centeno, J.E. Corona, F. Avilés, Temperature coefficient of resistance and thermal expansion coefficient of 10-nm thick gold films. Thin Solid Films 623, 84 (2017). https://doi.org/10.1016/j.tsf.2016.12.028

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the State Program of the Ministry of Education and Science of Ukraine 0120U102005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Pazukha.

Ethics declarations

Conflict of interest

The authors declare, they have not any known financial interests or personal relationships that could have an influence upon the presented work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazukha, I.M., Lohvynov, A.M. & Pylypenko, O.V. Effect of Au concentration on electrophysical properties of nanostructured (Ni80Fe20)xAu1-x thin films. Appl. Phys. A 128, 760 (2022). https://doi.org/10.1007/s00339-022-05907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05907-0

Keywords

Navigation