Skip to main content
Log in

Crystalline phase change and improvement in electro-optical parameters of SnSx thin films by different ambients

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SnSx thin films were deposited on glass substrates by sol–gel spin coating technique. The effects of various annealing ambients such as air, O2, Ar and N2 on structural, morphological, optical and electrical properties of thin films were investigated. X-Ray diffraction (XRD) results showed that the annealed sample in the air has the tetragonal SnO2 phase, while by annealing of the sample in O2, Ar and N2 the hexagonal SnS2 and the orthorhombic SnS structures were formed and the SnS to other phase fraction increased by Ar annealing. Field emission scanning electron microscopy (FESEM) images displayed that the film surface is constituted by homogeneously distributed nanograins and Ar annealing enhances the particle size. Transmittance spectra indicated that Ar and N2 annealing remarkably reduced the transparency of films and led to redshift of the optical absorption edge so that the band gap reduced from 3.69 in air-annealed films to 2.42 in N2-annealed films. The optical constants of thin films were estimated by envelope method. The PL spectra of air- and O2-annealed thin films exhibited the blue emission, while the N2 and Ar annealing causes green emission. Hall effect measurements revealed that the annealing of films in N2 leads to highest mobility compared to the other samples, whereas the carrier concentration and conductivity of SnSx thin films show the best electrical results which has been annealed in Ar ambient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data can be presented on request.

References:

  1. P.R. Bommireddy, C.S. Musalikunta, C. Uppala, S.H. Park, Mater. Sci. Semicond. Process. 71, 139 (2017)

    Article  Google Scholar 

  2. V.R.M. Reddy, S. Gedi, C. Park, R.W. Miles, K.T.R. Reddy, Curr. Appl. Phys. 15, 588 (2015)

    Article  ADS  Google Scholar 

  3. C. Rana, S. Saha, J. Mater. Sci.: Mater. Electron. 30, 21160 (2019)

    Google Scholar 

  4. C. Xia, X. Zhao, Y. Peng, H. Zhang, S. Wei, Y. Jia, Superlattices Microstruct. 85, 664 (2015)

    Article  ADS  Google Scholar 

  5. A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids, G. Mezinskis, Mater. Chem. Phys. 173, 52 (2016)

    Article  Google Scholar 

  6. T.H. Sajeesh, K.B. Jinesh, C.S. Kartha, K.P. Vijayakumar, Appl. Surf. Sci. 258, 6870 (2012)

    Article  ADS  Google Scholar 

  7. M. Ichimura, K. Takeuchi, Y. Ono, E. Arai, Thin Solid Films 361, 98 (2000)

    Article  ADS  Google Scholar 

  8. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, R.G. Gordon, Appl. Phys. Lett. 102, 053901 (2013)

    Article  ADS  Google Scholar 

  9. U. Chalapathi, B. Poornaprakash, S.H. Park, Superlattices Microstruct. 103, 221 (2017)

    Article  ADS  Google Scholar 

  10. M.G. Sousa, A.F. Da Cunha, P.A. Fernandes, J. Alloy. Compd. 592, 80 (2014)

    Article  Google Scholar 

  11. C.C. Huang, Y.J. Lin, C.Y. Chuang, C.J. Liu, Y.W. Yang, J. Alloy. Compd. 553, 208 (2013)

    Article  Google Scholar 

  12. J. Sun, Y. Huang, S. Nie, Z. Chen, J. Xu, L. Zhao, W. Zhou, Q. Wang, H. Gong, Mater. Lett. 178, 231 (2016)

    Article  Google Scholar 

  13. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, Third Edition. (Prentice-Hall, New York, 2001).

    Google Scholar 

  14. P.P. Hankare, P.A. Chate, D.J. Sathe, P.A. Chavan, V.M. Bhuse, J. Mater. Sci.: Mater. Electron. 20, 374 (2009)

    Google Scholar 

  15. A. Diéguez, A. Romano-Rodríguez, J.R. Morante, U. Weimar, W. Göpel, Sens. Actuators B: Chem. 31, 1–8 (1996)

    Article  Google Scholar 

  16. B.P. Reddy, M.C. Sekhar, S.V.P. Vattikuti, Y. Suh, S.-H. Park, Mater. Res. Bull. 103, 13 (2018)

    Article  Google Scholar 

  17. V. Govindan, L. Kashinath, D.J. Daniel, K. Sankaranarayanan, J. Mater. Sci.: Mater. Electron. 30, 7963 (2019)

    Google Scholar 

  18. M.N. Amroun, M. Khadraoui, Optik 184, 16 (2019)

    Article  ADS  Google Scholar 

  19. W. Zhao, Z. Wei, L. Zhang, X. Wu, X. Wang, Mater. Sci. Semicond. Process. 88, 173 (2018)

    Article  Google Scholar 

  20. H. Chen, L. Ding, W. Sun, Q. Jiang, J. Hu, J. Li, RSC Adv 5, 56401 (2015)

    Article  ADS  Google Scholar 

  21. F.E. Ghodsi, J. Mazloom, Appl. Phys. A 108, 693 (2012)

    Article  ADS  Google Scholar 

  22. N. Lavanya, C. Sekar, J. Electroanal. Chem. 840, 1 (2019)

    Article  Google Scholar 

  23. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  24. J.C. Tauc, Optical Properties of Solids (North-Holland, Amsterdam, 1972).

    Google Scholar 

  25. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E: Sci. Instrum. 9, 1002 (1976)

    Article  ADS  Google Scholar 

  26. X.N. Zhai, C.Q. Liu, N. Wang, T.T. Lun, M.S. Song, Q. Ge, H.L. Wang, Mater. Res. Express 6, 126458 (2020)

    Article  Google Scholar 

  27. B.P. Reddy, M.C. Sekhar, S.P. Vattikuti, Y. Suh, S.H. Park, Mater. Res. Bull. 103, 13 (2018)

    Article  Google Scholar 

  28. T.J. Coutts, D.L. Young, X. Li, MRS Bull. 25, 58 (2000)

    Article  Google Scholar 

  29. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  ADS  Google Scholar 

  30. Y.X. Guo, P. Wu, W.J. Cheng, J. Mater. Sci.: Mater. Electron. 26, 4922 (2015)

    Google Scholar 

  31. A. Salehi, F.E. Ghodsi, J. Mazloom, S. Ebrahimi-Koodehi, Appl. Phys. A 124, 661 (2018)

    Article  ADS  Google Scholar 

  32. A. Singhal, B. Sanyal, A.K. Tyagi, RSC Adv. 1, 903 (2011)

    Article  ADS  Google Scholar 

  33. J. Mazloom, F.E. Ghodsi, Mater. Res. Bull. 48, 1468 (2013)

    Article  Google Scholar 

  34. J. Mazloom, F.E. Ghodsi, M. Gholami, J. Alloy. Compd. 579, 384 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Guilan Research Council for the support of this work.

Author information

Authors and Affiliations

Authors

Contributions

FHM was involved in conceptualization, methodology, investigation and writing—original draft. FEG was involved in supervision, conceptualization, methodology, validation and writing—review and editing. JM was involved in methodology, validation, writing and review.

Corresponding author

Correspondence to F. E. Ghodsi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. In addition, all of the sections are relevant to our manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohazzab, F.H., Ghodsi, F.E. & Mazloom, J. Crystalline phase change and improvement in electro-optical parameters of SnSx thin films by different ambients. Appl. Phys. A 127, 478 (2021). https://doi.org/10.1007/s00339-021-04622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04622-6

Keywords

Navigation