Skip to main content
Log in

Mn2+- and Fe2+-doped LiNiPO4 cathode materials: structural, electrical, dielectric, and electrochemical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

LiNiPO4, LiNi0.8Mn0.2PO4, and LiNi0.8Mn0.1Fe0.1PO4 cathodes were prepared via the solid-state reaction technique. The XRD analysis confirmed that all three samples were well crystallized and belonged to the Pnmb space group with an olivine-type structure. FTIR analysis identified the four fundamental stretching and bending vibration modes of ions (PO43− groups) in the tetrahedral sites of all samples. The electrical conductivity was found in the range of 1.51–2.16 × 10–8 S/cm. The dielectric spectra revealed the existence of interfacial polarization Maxwell–Wagner-type dielectric dispersion in all samples. The frequency dependence study of electric modulus revealed the contribution of both long-range and short-range mobility of charge carriers in all samples. This study confirmed that single Mn2+ ions doping is more effective to enhance the electrical conductivity and electrochemical performance of LiNiPO4 cathode than Mn2+ and Fe2+ ions co-doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Similar content being viewed by others

References

  1. Z. Ying, P. Yue, L. Jia, W. Guiling, C. Dianxue, Chem. Res. Chin. Univ. 31, 117–122 (2015)

    Article  Google Scholar 

  2. R. Qing, M. Yang, Y. Meng, W. Sigmund, Electrochim. Acta 108, 827–832 (2013)

    Article  Google Scholar 

  3. Y. Bai, P. Qiu, Z. Wen, S. Han, J. Alloys. Compd. 508, 1–4 (2010)

    Article  Google Scholar 

  4. H. Huang, T. Faulkner, J. Barker, M.Y. Saidi, J. Power. Sources. 189, 748–751 (2009)

    Article  ADS  Google Scholar 

  5. S. Karthickprabhu, D. Vikraman, A. Kathalingam, K. Prasanna, H.S. Kim, K. Karuppasamy, Mater. Lett. 237, 224–227 (2019)

    Article  Google Scholar 

  6. K. Vijaya Babu, L. Seeta Devi, V. Veeraiah, K. Anand, J. Asian. Ceram. Soc. 4, 269–276 (2016)

    Article  Google Scholar 

  7. M.K. Devaraju, Q.D. Truong, I. Honma, Appl. Mater. Today 1, 95–99 (2015)

    Article  Google Scholar 

  8. S. Karthickprabhu, G. Hirankumar, S. Thanikaikarasan, P.J. Sebastian, J. New Mater. Electrochem. Syst. 17, 159–166 (2014)

    Article  Google Scholar 

  9. Y. Tao, B. Zhu, Ionics 27, 2909–2914 (2021)

    Article  Google Scholar 

  10. S.M. Rommel, N. Schall, C. Brunig, R. Weihrich, Monatsh. Chem. 145, 385–404 (2014)

    Article  Google Scholar 

  11. S. Karthikprabhu, K. Karuppasamy, D. Vikraman, K. Prasanna, T. Maiyalagan, A. Nichelson, A. Kathalingam, H.S. Kim, Appl. Surf. Sci. 449, 435–444 (2018)

    Article  ADS  Google Scholar 

  12. Y. Feng, H. Zhang, L. Fang, Y. Ouyang, Y. Wang, J. Mater. Chem. A 3, 15969–15976 (2015)

    Article  Google Scholar 

  13. P. Taddesse, K. Alemken Berie, V. Babu, J. Mol. Struct. 1219, 128593 (2020)

    Article  Google Scholar 

  14. M. Minakshi, P. Singh, D. Appadoo, D.E. Martin, Electrochim. Acta 56, 4356–4360 (2011)

    Article  Google Scholar 

  15. I. Abrahams, Acta Cryst. C 49, 925–926 (1993)

    Article  Google Scholar 

  16. Y. Asari, Y. Suwa, T. Hamada, ECS. Trans. 41, 115 (2012)

    Article  ADS  Google Scholar 

  17. W. He, D. Yuan, J. Qian, X. Ai, A. Yang, Y. Cao, J. Mater. Chem. A 1, 11397–11403 (2013)

    Article  Google Scholar 

  18. Y. Asari, Y. Suwa, T. Hamada, V.A. Dinh, J. Nara, T. Ohno, ECS Trans. 41, 115–127 (2012)

    Article  ADS  Google Scholar 

  19. R.G. Oh, J.E. Hong, H.W. Jung, K.S. Ryu, J. Power. Sources. 295, 1–8 (2015)

    Article  ADS  Google Scholar 

  20. Y. Iriyama, T. Kako, C. Yada, T. Abe, Z. Ogumi, Solid. State. Ion. 176, 2395–2398 (2005)

    Article  Google Scholar 

  21. T. Muraliganth, A. Manthiram, J. Phys. Chem. C 114, 15530–15540 (2010)

    Article  Google Scholar 

  22. P. Taddesse, M. Sultan, J. Appl. Chem. 7, 608–615 (2018)

    Google Scholar 

  23. K. Anand, B. Ramamurthy, V. Veeraiah, K. Vijaya Babu, Mater. Sci-Pol. 35, 66–80 (2017)

    Article  ADS  Google Scholar 

  24. L. Vijayan, R. Cheruku, G. Govindaraj, Mater. Res. Bull. 50, 341–347 (2014)

    Article  Google Scholar 

  25. S. Karthickprabhu, G. Hirankumar, A. Maheswaran, R.S. Daries Bella, C. Sanjeeviraja, Ionics 21, 345–357 (2015)

    Article  Google Scholar 

  26. K. Irshad, M.T. Khan, A. Murtaza, Phys. B: Condens. Matter. 543, 1–6 (2018)

    Article  ADS  Google Scholar 

  27. Ö. Ahmet, B. Emrah, C. Mustafa, Mater. Charact. 106, 152–162 (2015)

    Article  Google Scholar 

  28. C.M. Julien, A. Mauger, K. Zaghib, R. Veillette, H. Groult, Ionics 18, 625–633 (2012)

    Article  Google Scholar 

  29. C. Julien, Ionics 6, 30–46 (2000)

    Article  Google Scholar 

  30. T.Q. Tan, R.A.M. Osman, M.V. Reddy, Z. Jamal, M.S. Idris, Ionics 24, 3733–3744 (2018)

    Article  Google Scholar 

  31. K. Anand, B. Ramamurthy, V. Veeraiah, K.V. Babu, Appl. Ceram. 10, 47–55 (2016)

    Article  Google Scholar 

  32. A.K. Behera, N.K. Mohanty, B. Behera, P. Nayak, Adv. Mat. Lett. 4, 141–145 (2013)

    Article  Google Scholar 

  33. S. Ramesh, J. Electron. Mater. 50, 4333–4345 (2021)

    Article  ADS  Google Scholar 

  34. A. Azam, J. Alloys. Compd. 540, 145–153 (2012)

    Article  Google Scholar 

  35. S. Bibi, A. Khan, S. Khan, A. Ahmad, S.S. Shah, M. Siddiq, A. Iqbal, A.A. Al-Kahtani, Int. J. Energy. Res. 46, 810–821 (2021)

    Article  Google Scholar 

  36. M. Prabu, S. Selvasekarapandian, A.R. Kulkarni, S. Karthikeyan, G. Hirankumar, C. Sanjeeviraja, Ionics 17, 201–207 (2011)

    Article  Google Scholar 

  37. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, Ionics 25, 4013–4029 (2019)

    Article  Google Scholar 

  38. K.M. Batoo, Physica B. 406, 382–387 (2011)

    Article  ADS  Google Scholar 

  39. M. Kaiser, Physica B. 407, 606–661 (2012)

    Article  ADS  Google Scholar 

  40. M.M. Costa, G.F.M. Pires Júnior, A.S.B. Sombra, Mater. Chem. Phys. 123, 35–39 (2010)

    Article  Google Scholar 

  41. Z. Bakenov, I. Taniguchi, Electrochem. Commun. 12, 75–78 (2010)

    Article  Google Scholar 

  42. P.R. Kumar, M. Venkateswarlu, M. Misra, A.K. Mohanty, N. Satyanayana, J. Nanosci. Nanotechnol. 11(4), 3314–3322 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Arba Minch University for providing financial support to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulos Taddesse.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubaya, K., Taddesse, P. Mn2+- and Fe2+-doped LiNiPO4 cathode materials: structural, electrical, dielectric, and electrochemical properties. Appl. Phys. A 128, 619 (2022). https://doi.org/10.1007/s00339-022-05767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05767-8

Keywords

Navigation