Skip to main content
Log in

Fabrication, physical, mechanical properties, gamma-rays, and neutron shielding abilities of sodium bario-fluoride boro-vanadate glasses: experimental, theoretical, and simulation studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sodium bario-fluoride boro-vanadate glasses of compositions 20BaF2–(60-x)B2O3–20Na2O–x(V2O5), where x takes values of 0 (BBNV0), 1 (BBNV1), 2 (BBNV2), 3 (BBNV3), and 4 (BBNV4) mol% were fabricated using the ordinary melt quenching technique. Density by Archimedes' method, elastic moduli via Makishima–Mackenzie model, radiation shielding competence via XCOM software and FLUKA simulation code within γ-ray energy (81–1408 keV), as well as neutron shielding capacity have been examined. Density of the fabricated glasses was gradually enhanced from 3.1245 g/cm3 for BBNV0 glass sample with free of V2O5 to 3.4521 g/cm3 for BBNV4 glass sample enrich with V2O5. The enhancement of mechanical properties of BBNV0–BBNV5 glasses confirmed the role of vanadium as a modifier in the glass matrix. In terms of the linear attenuation coefficient (LAC), the insertion of V2O5 in the fabricated glass matrix has a direct constructive effect on the LAC values. The minimum values (LAC)min achieved at 1.408 MeV; 0.16 cm−1, 0.16 cm−1, 0.17 cm−1, 0.17 cm−1, and 0.17 cm−1 and the maximum values (LAC)max achieved at 0.081 MeV; 3.87 cm−1, 3.93 cm−1, 3.99 cm−1, 4.07 cm−1, and 4.13 cm−1 for BBNV0, BBNV1, BBNV2, BBNV3, and BBNV5 glasses, respectively. In terms of the half-value layer (HVL), the BBNV4 glasses possessed the minimum values and BBNV0 glasses possessed the maximum values. Therefore, the mentioned parameter follows the trend as: (HVL)BBNV0 > (HVL)BBNV1 > (HVL,)BBNV2 > (HVL)BBNV3 > (HVL)BBNV4. The enhancement of the V2O5 content in the fabricated glass matrix has a positive effect for enriching both effective atomic numbers (Zeff). In addition, the BBNV0 glass sample (free with V2O5) achieved the best neutron shielding ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statements and author contribution

All authors have contributed in conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, and visualization.

References

  1. S. Kasap, P. Capper, Handbook of Electronic and Photonic Materials, 2nd edn. (Springer International Publishing, Berlin, 2017). https://doi.org/10.1007/978-3-319-48933-9

    Book  Google Scholar 

  2. T. Togashi, T. Honma, K. Shinozaki, T. Komatsu, Electrochemical performance as cathode of lithium iron silicate, borate and phosphate glasses with di ff erent Fe2+ fractions. J Non-Cryst. Solids 436, 51–57 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.02.001

    Article  ADS  Google Scholar 

  3. P. Kupracz, A. Lenarciak, M. Łapinski, M. Przesniak-Welenc, N.A. Wójcik, R.J. Barczynski, Polaron hopping conduction in manganese borosilicate glass. Non-Cryst. Solids 458, 15–21 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.12.008

    Article  ADS  Google Scholar 

  4. N. Ahlawat, P. Aghamkar, A. Agarwal, N. Ahlawat, Study of conduction mechanism in Fe2O3 doped Na2O–Bi2O3 –B2O3 semiconducting glasses. Physica B 482, 58–64 (2016). https://doi.org/10.1016/j.physb.2015.12.014

    Article  Google Scholar 

  5. A.M.A. Heaish, H.M.H. Zakaly, H.A. Saudi, S.A.M. Issa, H.O. Tekin, M.M. Hessein, Y.S. Rammah, Thermal and optical characteristics of synthesized sand/CeO2 glasses: experimental approach. J. Electron. Mater. 51, 2070–2076 (2022). https://doi.org/10.1007/s11664-022-09470-5

    Article  ADS  Google Scholar 

  6. O. Tekin, G. Amisned, G. Susoy, H.M.H. Zakaly, S.A.M. Issa, G. Kilic, Y.S. Rammah, G. Lakshminarayana, A. Ene, A detailed investigation on highly dense CuZr bulk metallic glasses for shielding purposes. Open Chem. 20, 69–80 (2022). https://doi.org/10.1515/chem-2022-0127

    Article  Google Scholar 

  7. M.S. Shams, Y.S. Rammah, F.I. El-Agawany, R.A. Elsad, Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5 –Li2O–ZnO–CdO glasses. J Mater Sci Mater Electron 32, 1877–1887 (2021). https://doi.org/10.1007/s10854-020-04956-6

    Article  Google Scholar 

  8. R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/ erbium (III) lead-borate glasses: experimental studies. J. Mater. Res. Tech. 13, 1363–1373 (2021). https://doi.org/10.1016/j.jmrt.2021.05.029

    Article  Google Scholar 

  9. G. Ori, M. Montorsi, A. Pedone, C. Siligardi, Insight into the structure of vanadium containing glasses: a molecular dynamics study. J. Non-Cryst. Solids. 357, 2571–2579 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.02.002

    Article  ADS  Google Scholar 

  10. A. Al-Hajry, A. Al-Shahrani, M.M. El-Desoky, Structural and other physical properties of barium vanadate glasses. Mater. Chem. Phys. 95, 300–306 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.041

    Article  Google Scholar 

  11. N.S. Saetova, A.A. Raskovalov, B.D. Antonov, T.A. Denisova, N.A. Zhuravlev, Structural features of Li2O–V2O5–B2O3 glasses: Experiment and molecular dynamics simulation. J. Non-Cryst. Solids 545, 120253 (2020)

    Article  Google Scholar 

  12. Y.S. Rammah, F.I. El-Agawany, E.A. Abdel Wahab, M.M. Hessien, Kh.S. Shaaban, Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiat. Phys. Chem. 193, 109956 (2022). https://doi.org/10.1016/j.radphyschem.2021.109956

    Article  Google Scholar 

  13. H.H. Somaily, H. Algarni, Y.S. Rammah, A. Alalawi, C. Mutuwong, M.S. Al-Buriahi, The effects of V2O5/K2O substitution on linear and nonlinear optical properties and the gamma ray shielding performance of TVK glasses. Ceram. Int. 47, 1012–1020 (2021). https://doi.org/10.1016/j.ceramint.2020.08.215

    Article  Google Scholar 

  14. Y.S. Rammah, K.A. Mahmoud, M.I. Sayyed, F.I. El-Agawany, R. El-Mallawany, Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnO–Na2O–V2O5: Synthesis, optical, physical and gamma photon attenuation properties. J. Non-Cryst. Solids 534, 119944 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.119944

    Article  Google Scholar 

  15. G. Kilic, E. Ilik, K.A. Mahmoud, R. El-Mallawany, F.I. El-Agawany, Y.S. Rammah, Novel zinc vanadyl boro-phosphate glasses: ZnO–V2O5– P2O5 –B2O3: Physical, thermal, and nuclear radiation shielding properties. Ceram. Int. 46, 19318–19327 (2020). https://doi.org/10.1016/j.ceramint.2020.04.272

    Article  Google Scholar 

  16. S. Sindhu, S. Sanghi, A. Agarwal, V.P. Seth, N. Kishore, Structural, optical, physical and electrical properties of V2O5·SrO·B2O3 glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64(1), 196–204 (2006)

    Article  ADS  Google Scholar 

  17. S.N. Mohamed, A.K. Yahya, Effects of V2O5 on elastic, structural, and optical properties of mixed ionic–electronic 20Na2O–20CaO–(60–x)B2O3 –xV2O5 glasses. Ionics 24, 2647–2664 (2018)

    Article  Google Scholar 

  18. S. Kim, K. Han, S. Kim, L. Kadathala, J. Kim, J. Choi, Strengthening thermal stability in V2O5-ZnO-BaO-B2O3-M(PO3)n glass system (M = Al, Mg) for laser sealing applications. Appl. Sci. 11, 4603 (2021). https://doi.org/10.3390/app11104603

    Article  Google Scholar 

  19. A.S. Abouhaswa, F.I. El-Agawany, E.M. Ahmed, Y.S. Rammah, Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiat. Phys. Chem. 192, 109922 (2022)

    Article  Google Scholar 

  20. A. Makishima, J.D. Mackenzie, Direct calculation of Young’s modulus of glass. J. Non-Cryst. Solids 12(1), 35–45 (1973)

    Article  ADS  Google Scholar 

  21. S. Inaba, Sh. Fujino, K. Morinaga, Young’s modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82(12), 3501–3507 (1999)

    Article  Google Scholar 

  22. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E.-S. Yousef, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceram. Int. 15, 10 (2020). https://doi.org/10.1016/j.ceramint.2020.06.093

    Article  Google Scholar 

  23. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, A. Gamal, Yousef ES, Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceram. Int. 46, 25440–25452 (2020). https://doi.org/10.1016/j.ceramint.2020.07.014

    Article  Google Scholar 

  24. N. Elkhoshkhany, E. Syala, E. Yousef, Concentration dependence of the elastic moduli, thermal properties, and non-isothermal kinetic parameters of Yb3+ doped multicomponent tellurite glass system. Results in Physics 16, 102876 (2020)

    Article  Google Scholar 

  25. G. Battistoni, F. Cerutti, A. Fassò, A. Ferrari, S. Muraro, J. Ranft, S. Roesler, P.R. Sala, The FLUKA code: description and benchmarking, In: AIP Conference Proceedings. AIP 31–49. https://doi.org/10.1063/1.2720455 (2007)

  26. U. Perişanoğlu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.10.023

    Article  Google Scholar 

  27. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M.A. Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: An experimental and simulation study. Opt. Mater. (Amsy) 114, 110942 (2021). https://doi.org/10.1016/j.optmat.2021.110942

    Article  Google Scholar 

  28. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-2069-4

    Article  Google Scholar 

  29. H.O. Tekin, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, Lithium-fluoro borotellurite glasses: Nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat. Phys. Chem. 190, 109819 (2022). https://doi.org/10.1016/j.radphyschem.2021.109819

    Article  Google Scholar 

  30. H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, M.M. Hessien, Y.S. Rammah, A.M.A. Henaish, Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2 /sand reinforced borate glasses: Experimental and simulation studies. Radiat. Phys. Chem. 191, 109837 (2022). https://doi.org/10.1016/j.radphyschem.2021.109837

    Article  Google Scholar 

  31. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, XCOM: photon cross sections database. NIST Stand. Ref. Database 8, 87–3597 (1998)

    Google Scholar 

  32. E. Şakar, E.Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  33. A. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010)

    Article  Google Scholar 

  34. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  Google Scholar 

  35. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125(10), 717 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah Bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R60), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The researcher (Y.S. Rammah) is funded by a full scholarship (2019/2020) from the Ministry of Higher Education of the Arabic Republic of Egypt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaif, N.A.M., Rammah, Y.S., Ahmed, E.M. et al. Fabrication, physical, mechanical properties, gamma-rays, and neutron shielding abilities of sodium bario-fluoride boro-vanadate glasses: experimental, theoretical, and simulation studies. Appl. Phys. A 128, 615 (2022). https://doi.org/10.1007/s00339-022-05750-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05750-3

Keywords

Navigation