Skip to main content
Log in

Metal-vapor atom behavior on thermocurable polydimethylsiloxane films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal-vapor deposition on polymer surfaces has been used in a variety of fields such electronics, food packing, and decorations. Polydimethylsiloxane (PDMS) is one of the widely used polymers. We studied a metal-deposition modulation phenomenon on a thermocurable PDMS. The metal atoms were easy to desorb from the uncured PDMS surface than from the cured surface. Furthermore, some metal atoms on the uncured surface were absorbed into the film and generated intrinsic color, which origins was suggested due to the size of metal nanoparticles. It was revealed that the differences in metal-deposition properties depended on the chain mobility of PDMS; uncured PDMS chains were in a high mobility state, while the cured PDMS surface had low mobility because of cross-linked chains. On the surface with high mobility molecules, metal atoms were easy to desorb and hard to nucleate due to the low density of metal atoms. Potential applications of metal-deposition modulation on thermocurable PDMS surfaces were proposed: three-dimensional metal-vapor integration, a mirror with no electronic conductance, and various colored Au patterns prepared with maskless vacuum deposition. These processes are simple one and any substrates including solid, flexible, flat, or curved can be used, and therefore, would be applied to a variety of fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. K.L. Mittal, Metallized Plastics 2: Fundamental and Applied Aspects (Plenum Press, New York, 1991)

    Book  Google Scholar 

  2. S. Zhang, E. Hubis, G. Tomasello, G. Soliveri, P. Kumar, F. Cicoira, “Patterns of stretchable organic electrochemical transistors.” Chem Mater 29, 3126–3132 (2017)

    Article  Google Scholar 

  3. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)

    Article  ADS  Google Scholar 

  4. K. Arno, C.G. Andrew, B.H. Andrew, Electroluminescent conjugated polymers seeing polymers in a new light. Angew Chem Int Ed 37, 402–428 (1998)

    Article  Google Scholar 

  5. F.-R. Fan, Z.-Q.T., Z.L. Wang., Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)

    Article  Google Scholar 

  6. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

    Article  ADS  Google Scholar 

  7. Y.R. Jeong, H. Park, S.W. Jin, S.Y. Hong, S.S. Lee, J.S. Ha, Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv Funct Mater 25, 4228–4236 (2015)

    Article  Google Scholar 

  8. M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang, C. Wang, H. Xie, M. Zhang, Y. Zhang, “Flexible and highly sensitive pressure sensors based on bionic hierarchical structures.” Adv Funct Mater 7, 1606066 (2017)

    Article  Google Scholar 

  9. S. Benight, C. Wang, J.B.H. Tok, Z. Bao, “Stretchable and self-healing polymers and devices for electronic skin.” Prog Poly Sci 38, 1961–1977 (2013)

    Article  Google Scholar 

  10. W. Seung, M.K. Gupta, K.Y. Lee, K.-S. Shin, J.-H. Lee, T.Y. Kim, S. Kim, J. Lin, J.H. Kim, S.-W. Kim, Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9, 3501–3509 (2015)

    Article  Google Scholar 

  11. X.-M. Zhao, Y. Xia, G.M. Whitesides, Fabrication of three-dimensional micro-structures: microtransfer molding. Adv Mater 8, 837–840 (1996)

    Article  Google Scholar 

  12. T. Tsujioka, Selective metal-vapor deposition on organic surfaces. Chem Rec 16, 231–248 (2016)

    Article  Google Scholar 

  13. S. Varagnolo, J. Lee, H. Amari, R.A. Hatton, Selective deposition of silver and copper films by condensation coefficient modulation. Mater Horiz 7, 143 (2010)

    Article  Google Scholar 

  14. A. Thran, M. Kiene, V. Zaporojtchenko, F. Faupel, “Condensation coefficients of ag on polymers.” Phys Rev Lett 82, 1903–1906 (1999)

    Article  ADS  Google Scholar 

  15. T. Tsujioka, K. Tsuji, Metal-vapor deposition modulation on soft polymer surfaces. Appl Phys Express 5, 021601 (2012)

    Article  ADS  Google Scholar 

  16. T. Tsujioka, A. Nshimura, Selective noble-metal deposition modulation on photocurable polydimethylsiloxane films for electronics device applications. Appl Phys A 127, 228 (2021)

    Article  ADS  Google Scholar 

  17. H. Yuk, T. Zhang, G.A. Parada, X. Liu, X. Zhao, Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nature Comm 7, 12028 (2016)

    Article  ADS  Google Scholar 

  18. A. Mata, A.J. Fleischman, S. Roy, Characterization of Polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevice 7, 281–293 (2005)

    Article  Google Scholar 

  19. R.N. Palchesko, L. Zhang, Y. Sun, A.W. Feinberg, Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7, e51499 (2012)

    Article  ADS  Google Scholar 

  20. T. Sasaki, Y. Ito, T. Sasai, S. Irie, Glass transition of a polystyrene surface as detected via two-dimensional diffusion of Au atoms during physical vapor deposition. Polymer 178, 121577 (2019)

    Article  Google Scholar 

  21. R. Willecke, F. Faupel, Diffusion of gold and silver in bisphenol a polycarbonate. Macromolecules 30, 567–573 (1997)

    Article  ADS  Google Scholar 

  22. K. Akamatsu, S. Deki, Nanoscale metal particles dispersed in polymer matrix. Nanostruct Mater 8, 1121–1129 (1997)

    Article  Google Scholar 

  23. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107, 668–677 (2003)

    Article  Google Scholar 

  24. S. Eustis, M.A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes” Chem. Soc Rev 3, 209–217 (2006)

    Article  Google Scholar 

  25. G.V. Hartland, “Optical studies of dynamics in noble metal nanostructures.” Chem Rev 6, 3858–3887 (2011)

    Article  Google Scholar 

  26. J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D.H. Jeong, M.-H. Cho, “antimicrobial effects of silver nanoparticles”. nanomedicine: nanotechnology. Biol Med 3, 95–101 (2007)

    Google Scholar 

  27. Sigma Aldrich. "Silver Nanoparticle Dispersions from Aldrich Materials Science". AZoNano. 27 March 2022. <https://www.azonano.com/article.aspx?ArticleID=2894>

  28. V. Zaporojtchenko, T. Strunskus, K. Behnke, Cv. Bechtolsheim, F. Faupel, Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects. Microelectron Eng 50, 465–471 (2000)

    Article  Google Scholar 

  29. R.L.W. Smithson, D.J. McClure, D.F. Evans, Effects of polymer substrate surface energy on nucleation and growth of evaporated gold films. Thin Solid Films 307, 110–112 (1997)

    Article  ADS  Google Scholar 

  30. K. Efimenko, W.E. Wallace, J. Genzer, Surface modification of sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254, 306–315 (2002)

    Article  ADS  Google Scholar 

  31. A.S. Marshall, S.E.B. Petrie, Rate-determining factors for enthalpy relaxation of glassy polymers molecular weight. J Appl Phys 46, 4223 (1975)

    Article  ADS  Google Scholar 

  32. L. Andreozzi, M. Faetti, M. Giordano, F. Zulli, Molecular-weight dependence of enthalpy relaxation of PMMA. Macromol 38, 6056–6067 (2005)

    Article  ADS  Google Scholar 

  33. T. Tsujioka, S. Matsumoto, K. Yamamoto, M. Dohi, Y. Lin, S. Nakamura, S. Yokojima, K. Uchida, Surface molecular kinetics on the outermost layer characterized by nucleation of Mg-vapor atoms. Appl Surf Sci 490, 309–317 (2019)

    Article  ADS  Google Scholar 

  34. K. Yamaguchi, T. Tsujioka, Selective metal-vapor deposition on solvent evaporated polymer surfaces. Thin Solid Films 597, 220–225 (2015)

    Article  ADS  Google Scholar 

  35. T. Tsujioka, S. Matsumoto, Nucleation, absorption, or desorption of metal-vapor atoms on amorphous photochromic diarylethene films having a low glass transition temperature. J Mater Chem C 6, 9786 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express profound gratitude to Shimadzu Techno-Research Inc. for their help on the DSC measurements in Figs. 4, 5a. A part of this study was supported by KAKENHI Grant No.21K05214.

Funding

This work was partially supported by JSPS KAKENHI under Grant No. 21K05214.

Author information

Authors and Affiliations

Authors

Contributions

MD: Methodology, Investigation, Validation, Writing the original draft. TT: Conceptualization, Methodology, Validation, Verification.

Corresponding author

Correspondence to Megumi Dohi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher' s Note

Springer Nature remains neutral with regard to jurisdi ctional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dohi, M., Tsujioka, T. Metal-vapor atom behavior on thermocurable polydimethylsiloxane films. Appl. Phys. A 128, 606 (2022). https://doi.org/10.1007/s00339-022-05745-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05745-0

Keywords

Navigation