Skip to main content
Log in

A micro-iridescent focus generated from a microsphere on a reflective nanograting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoscale high-intensity illuminations can be produced by dielectric microspheres, which are used for super-resolution imaging and optical nonlinear enhancement. Herein, a microscale chromatic dispersion assisted of a microsphere is experimentally presented. We find that a micro-iridescent focus can be generated from a microsphere put on a reflective nanograting under an oblique white-light illumination. The size of the micro-iridescent focus is smaller than the diameter of the microsphere, and the long wavelengths of light contributing to the micro-iridescent focus are distributed farther away from the microsphere. Furthermore, a curved-iridescent focus can also be obtained. Finally, it shows that the direction of the micro-iridescent focus is perpendicular to that of the reflective nanograting and the role of oblique illumination in experiments is discussed numerically. Our works present that a microsphere on a reflective nanograting can produce a microscale chromatic dispersion. This novel structure may have potential applications in the miniaturization of optical spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B.S. Lukyanchuk, R. Paniagua-Domínguez, I.V. Minin, O.V. Minin, Z. Wang, Refractive index less than two: photonic nanojets yesterday today and tomorrow. Opt. Mater. Express 7, 1820 (2017)

    Article  ADS  Google Scholar 

  2. J. Zhu, L.L. Goddard, All-dielectric concentration of electromagnetic fields at the nanoscale: the role of photonic nanojets. Nano Adv. 1, 4615 (2019)

    Article  Google Scholar 

  3. O.V. Minin, I.V. Minin, Optical phenomena in mesoscale dielectric particles. Photonics 8(12), 591 (2021)

    Article  ADS  Google Scholar 

  4. A. Darafsheh, Photonic nanojets and their applications. J. Phys. Photonics 3(2), 22001 (2021)

    Article  Google Scholar 

  5. A. Darafsheh, Microsphere-assisted microscopy. J. Appl. Phys. 131(3), 031102 (2022)

    Article  ADS  Google Scholar 

  6. S. Kwon, J. Park, K. Kim, Y. Cho, M. Lee, Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. Light-Sci. Appl. 11(1), 1–14 (2022)

    Article  Google Scholar 

  7. L. Chen, Y. Zhou, Y. Li, M. Hong, Microsphere enhanced optical imaging and patterning: from physics to applications. Appl. Phys. Rev. 6(2), 21304 (2019)

    Article  Google Scholar 

  8. L. Chen, Y. Zhou, R. Zhou, M. Hong, Microsphere – the future of optical microscopes: beating the diffraction limit with microsphere-assisted technology. PhotonicsViews 18(3), 79–81 (2021)

    Article  Google Scholar 

  9. H.S. Patel, P.K. Kushwaha, M.K. Swami, Photonic nanojet assisted enhancement of Raman signal: effect of refractive index contrast. J. Appl. Phys. 123(2), 23102 (2018)

    Article  Google Scholar 

  10. V. Gašparić, D. Ristić, H. Gebavi, M. Ivanda, Resolution and signal enhancement of Raman mapping by photonic nanojet of a microsphere. Appl. Surf. Sci. 545, 149036 (2021)

    Article  Google Scholar 

  11. P.B. Johnson, A. Karvounis, H.J. Singh, C.J. Brereton, K.N. Bourdakos, K. Lunn, J.J.W. Roberts, D.E. Davies, O.L. Muskens, M.G. Jones, S. Mahajan, Super-resolved polarisation-enhanced second harmonic generation for direct imaging of nanoscale changes in collagen architecture. Optica 8(5), 674–685 (2021)

    Article  ADS  Google Scholar 

  12. L. Li, W. Guo, Y. Yan, S. Lee, T. Wang, Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light-Sci. Appl. 2(9), e104 (2013)

    Article  ADS  Google Scholar 

  13. P.-Y. Li, Y. Tsao, Y.-J. Liu, Z.-X. Lou, W.-L. Lee, S.-W. Chu, C.-W. Chang, Unusual imaging properties of superresolution microspheres. Opt. Express 24(15), 16479–16486 (2016)

    Article  ADS  Google Scholar 

  14. S. Zhou, K. Li, Y. Wang, Tunable photonic nanojets from a micro-cylinder with a dielectric nano-layer. Optik 225, 165878 (2021)

    Article  ADS  Google Scholar 

  15. L. Yue, O.V. Minin, Z. Wang, J.N. Monks, A.S. Shalin, I.V. Minin, Photonic hook: a new curved light beam. Opt. Lett. 43(4), 771–774 (2018)

    Article  ADS  Google Scholar 

  16. I.V. Minin, O.V. Minin, G.M. Katyba, N.V. Chernomyrdin, V.N. Kurlov, K.I. Zaytsev, L. Yue, Z. Wang, D.N. Christodoulides, Experimental observation of a photonic hook. Appl. Phys. Lett. 114(3), 31105 (2019)

    Article  Google Scholar 

  17. G. Gu, P. Zhang, S. Chen, Y. Zhang, H. Yang, Inflection point: a perspective on photonic nanojets. Photonics Res. 9(7), 1157–1171 (2021)

    Article  Google Scholar 

  18. A.E. Goodling, S. Nagelberg, B. Kaehr, C.H. Meredith, S.I. Cheon, A.P. Saunders, M. Kolle, L.D. Zarzar, Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566(7745), 523–527 (2019)

    Article  ADS  Google Scholar 

  19. Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan, Miniaturization of optical spectrometers. Science (2021). https://doi.org/10.1126/science.abe0722

    Article  Google Scholar 

  20. Z. Wang, M. Hong, B.S. Luk’yanchuk, Y. Lin, Q. Wang, T. Chong, Angle effect in laser nanopatterning with particle-mask. J. Appl. Phys. 96(11), 6845–6850 (2004)

    Article  ADS  Google Scholar 

  21. J. Boneberg, P. Leiderer, Optical near-field imaging and nanostructuring by means of laser ablation. Opto-Electron. Sci. 1(1), 210003 (2021)

    Article  Google Scholar 

  22. L. Yue, B. Yan, J.N. Monks, R. Dhama, Z. Wang, O.V. Minin, I.V. Minin, Photonic jet by a near-unity-refractive-index sphere on a dielectric substrate with high index contrast. Ann. Phys-Berlin 530(6), 1800032 (2018)

    Article  ADS  Google Scholar 

  23. O.V. Minin, I.V. Minin, Terahertz microscope with oblique subwavelength illumination: design principle. Quantum Electron. 52(1), 13 (2022)

    Article  ADS  Google Scholar 

  24. A. Mandal, P. Tiwari, P.K. Upputuri, V.R. Dantham, Characteristic parameters of photonic nanojets of single dielectric microspheres illuminated by focused broadband radiation. Sci. Rep-UK 12(1), 1–16 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Research Program of Huai'an (No. HAB202153), National Natural Science Foundation of China (61974143) and Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020223).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Zhou or Wenchao Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1041 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Shi, Y., Li, K. et al. A micro-iridescent focus generated from a microsphere on a reflective nanograting. Appl. Phys. A 128, 598 (2022). https://doi.org/10.1007/s00339-022-05744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05744-1

Keywords

Navigation