Skip to main content
Log in

First-principles study of optical properties of monolayer h-BN and its defect structures under equibiaxial strain

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electronic structure and optical properties of monolayer h-BN were investigated using first-principles calculations. Intrinsic monolayer h-BN is a wide-bandgap semiconductor. When the monolayer h-BN has B defects, the system exhibits metallicity and magnetic properties; when the monolayer h-BN has N defects, the system exhibits semi-metallicity and magnetic. Optical calculations show that the optical parameters of the monolayer h-BN are red-shifted by tensile strain and blue-shifted by compressive strain. The strain synergistic vacancies can significantly modify the monolayer h-BN in the low-energy region, and the B vacancies have a greater effect on the optical parameters of the monolayer h-BN than the N vacancies, which will help the application of monolayer h-BN in visible light region and solar energy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films[J]. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  ADS  Google Scholar 

  2. R. Krishnan, W.S. Su, H.T. Chen, A new carbon allotrope: penta-graphene as a metal-free catalyst for CO oxidation[J]. Carbon 114, 465–472 (2017). https://doi.org/10.1016/j.carbon.2016.12.054

    Article  Google Scholar 

  3. B. Jing, Z. Ao, Z. Teng et al., Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications[J]. Sustain. Mater. Technol. 16, 12–22 (2018). https://doi.org/10.1016/j.susmat.2018.04.001

    Article  Google Scholar 

  4. H. Cui, T. Liu, Y. Zhang et al., Ru-InN monolayer as a gas scavenger to guard the operation status of SF 6 insulation devices: A first-principles theory [J]. IEEE Sens. J. 19(13), 5249–5255 (2019). https://doi.org/10.1109/JSEN.2019.2899966

    Article  ADS  Google Scholar 

  5. D. Sen, R. Thapa, K. Bhattacharjee et al., Site dependent metal adsorption on (3× 3) h-BN monolayer: Stability, magnetic and optical properties[J]. Comput. Mater. Sci. 51(1), 165–171 (2012). https://doi.org/10.1016/j.commatsci.2011.07.042

    Article  Google Scholar 

  6. M. Gao, A. Lyalin, T. Taketsugu, CO oxidation on h-BN supported Au atom[J]. J. Chem. Phys. 138(3), 034701 (2013). https://doi.org/10.1063/1.4774216

    Article  ADS  Google Scholar 

  7. T. Ayari, C. Bishop, M.B. Jordan et al., Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications[J]. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/s41598-017-15065-6

    Article  Google Scholar 

  8. G.R. Bhimanapati, Z. Lin, V. Meunier et al., Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano 9(12), 11509–11539 (2015). https://doi.org/10.1021/acsnano.5b05556

    Article  Google Scholar 

  9. X. Sun, Q. Yang, R. Meng et al., Adsorption of gas molecules on graphene-like InN monolayer: a first-principle study[J]. Appl. Surf. Sci. 404, 291–299 (2017). https://doi.org/10.1016/j.apsusc.2017.01.264

    Article  ADS  Google Scholar 

  10. H. Cui, C. Yan, P. Jia et al., Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study [J]. Appl. Surf. Sci. 512, 145759 (2020). https://doi.org/10.1016/j.apsusc.2020.145759

    Article  Google Scholar 

  11. L.X. Lin, Z.H. Li, Y. Zheng et al., Size-dependent oriented attachment in the growth of pure and defect-free hexagonal boron nitride nanocrystals[J]. Nanotechnology 22(21), 215603 (2011). https://doi.org/10.1088/0957-4484/22/21/215603

    Article  ADS  Google Scholar 

  12. B. Rakshit, P. Mahadevan, Stability of the bulk phase of layered ZnO[J]. Phys. Rev. Lett. 107(8), 085508 (2011). https://doi.org/10.1103/PhysRevLett.107.085508

    Article  ADS  Google Scholar 

  13. D.P. Rai, T.V. Vu, A. Laref et al., Electronic and optical properties of 2D monolayer (ML) MoS2 with vacancy defect at S sites[J]. Nano-Struct. Nano-Objects 21, 100404 (2020). https://doi.org/10.1016/j.nanoso.2019.100404

    Article  Google Scholar 

  14. A. Laref, M. Alsagri, S.M. Alay-e-Abbas et al., Electronic structure and optical characteristics of AA stacked bilayer graphene: A first principles calculations[J]. Optik 206, 163755 (2020). https://doi.org/10.1016/j.ijleo.2019.163755

    Article  ADS  Google Scholar 

  15. K.S. Novoselov, D. Jiang, F. Schedin et al., Two-dimensional atomic crystals[J]. Proc. Natl. Acad. Sci. 102(30), 10451–10453 (2005). https://doi.org/10.1073/pnas.0502848102

    Article  ADS  Google Scholar 

  16. J.C. Meyer, A. Chuvilin, G. Algara-Siller et al., Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes[J]. Nano Lett. 9(7), 2683–2689 (2009). https://doi.org/10.1021/nl9011497

    Article  ADS  Google Scholar 

  17. W.Q. Han, L. Wu, Y. Zhu et al., Structure of chemically derived mono-and few-atomic-layer boron nitride sheets[J]. Appl. Phys. Lett. 93(22), 223103 (2008). https://doi.org/10.1063/1.3041639

    Article  ADS  Google Scholar 

  18. N. Yang, C. Xu, J. Hou et al., Preparation and properties of thermally conductive polyimide/boron nitride composites[J]. RSC Adv. 6(22), 18279–18287 (2016). https://doi.org/10.1039/C6RA01084A

    Article  ADS  Google Scholar 

  19. B. Chettri, P.K. Patra, T.V. Vu et al., Induced ferromagnetism in bilayer hexagonal Boron Nitride (h-BN) on vacancy defects at B and N sites[J]. Physica E 126, 114436 (2021). https://doi.org/10.1016/j.physe.2020.114436

    Article  Google Scholar 

  20. K. Do-Hyun, Hag-Soo, et al., Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy [J]. Nano Converg. (2017). https://doi.org/10.1186/s40580-017-0107-0

    Article  Google Scholar 

  21. H. Cui, T. Liu, P. Jia, A DFT study of healing the N vacancy in h-BN monolayer by NO molecules[J]. Appl. Phys. A 126(4), 1–5 (2020). https://doi.org/10.1007/s00339-020-03470-0

    Article  Google Scholar 

  22. Z. Huang, C. He, X. Qi et al., Band structure engineering of monolayer MoS2 on h-BN: first-principles calculations[J]. J. Phys. D Appl. Phys. 47(7), 075301 (2014). https://doi.org/10.1088/0022-3727/47/7/075301

    Article  ADS  Google Scholar 

  23. M. Legesse, S.N. Rashkeev, H. Saidaoui et al., Band gap tuning in aluminum doped two-dimensional hexagonal boron nitride[J]. Mater. Chem. Phys. 250, 123176 (2020). https://doi.org/10.1016/j.matchemphys.2020.123176

    Article  Google Scholar 

  24. L.S. Zhao, C.P. Chen, L.L. Liu et al., Magnetism and piezoelectricity of hexagonal boron nitride with triangular vacancy[J]. Chin. Phys. B 27(1), 016301 (2018). https://doi.org/10.1088/1674-1056/27/1/016301

    Article  ADS  Google Scholar 

  25. Y. Niu, Z. Cheng, Y. Xu et al., Explanation of the microscopic mechanism of h-BN isostructural transformation under biaxial strain[J]. Mater. Today Commun. 27, 102391 (2021). https://doi.org/10.1016/j.mtcomm.2021.102391

    Article  Google Scholar 

  26. Z.Z.F.Z. Tie-Ge, Z. Xu, First-principles calculations of h-BN monolayers by doping with oxygen and sulfur[J]. Acta Physica Sinica (2013). https://doi.org/10.7498/aps.62.083102

    Article  Google Scholar 

  27. L. Kun, X.Z. Hua, L. Bo et al., Effect of oxygen atoms adsorption and doping on hexagonal boron nitride[J]. Physica E 135, 114977 (2022). https://doi.org/10.1016/j.physe.2021.114977

    Article  Google Scholar 

  28. T. Haga, Y. Matsuura, Y. Fujimoto et al., Electronic states and modulation doping of hexagonal boron nitride trilayers[J]. Phys. Rev. Mater. 5(9), 094003 (2021). https://doi.org/10.1103/PhysRevMaterials.5.094003

    Article  Google Scholar 

  29. K. Xu, Y. Tang, C. Wu et al., Achieving optical phosphine sensitive h-BN nanosheets through transition metal doping[J]. Appl. Surf. Sci. 585, 152700 (2022). https://doi.org/10.1016/j.apsusc.2022.152700

    Article  Google Scholar 

  30. M.S. Si, D.S. Xue, Magnetic properties of vacancies in a graphitic boron nitride sheet by first-principles pseudopotential calculations[J]. Phys. Rev. B 75(19), 193409 (2007). https://doi.org/10.1103/PhysRevB.75.193409

    Article  ADS  Google Scholar 

  31. R.F. Liu, C. Cheng, Ab initio studies of possible magnetism in a BN sheet by nonmagnetic impurities and vacancies[J]. Phys. Rev. B 76(1), 014405 (2007). https://doi.org/10.1103/PhysRevB.76.014405

    Article  ADS  Google Scholar 

  32. B. Huang, H. Xiang, J. Yu et al., Effective control of the charge and magnetic states of transition-metal atoms on single-layer boron nitride[J]. Phys. Rev. Lett. 108(20), 206802 (2012). https://doi.org/10.1103/PhysRevLett.108.206802

    Article  ADS  Google Scholar 

  33. R. Frisenda, M. Drüppel, R. Schmidt et al., Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides[J]. npj 2D Mater. Appl. 1(1), 1–7 (2017). https://doi.org/10.1038/s41699-017-0013-7

    Article  Google Scholar 

  34. L. Dong, J. Lou, V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides[J]. ACS Nano 11(8), 8242–8248 (2017). https://doi.org/10.1021/acsnano.7b03313

    Article  Google Scholar 

  35. Y. Yang, W.H. Fang, A. Benderskii et al., Strain controls charge carrier lifetimes in monolayer WSe2: ab initio time domain analysis[J]. J. Phys. Chem. Lett. 10(24), 7732–7739 (2019). https://doi.org/10.1021/acs.jpclett.9b03105

    Article  Google Scholar 

  36. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  37. G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium[J]. Phys. Rev. B 49(20), 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  ADS  Google Scholar 

  38. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B 54(16), 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  39. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B 59(3), 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  40. P.E. Blöchl, Projector augmented-wave method[J]. Phys. Rev. B 50(24), 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  41. D.J. Chadi, Special points for Brillouin-zone integrations[J]. Phys. Rev. B 16(4), 1746 (1977). https://doi.org/10.1103/PhysRevB.16.1746

    Article  ADS  Google Scholar 

  42. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple[J]. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  43. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations[J]. Phys. Rev. B 13(12), 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  44. R. Beiranvand, S. Valedbagi, Electronic and optical properties of h-BN nanosheet: a first principles calculation[J]. Diam. Relat. Mater. 58, 190–195 (2015). https://doi.org/10.1016/j.diamond.2015.07.008

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11447139, No. 11704307, No. 51974237, No. 52174205), and Natural Science Basis Research Plan in Shaanxi Province of China (Program No. 2015JQ1027).

Author information

Authors and Affiliations

Authors

Contributions

CW and SL wrote the main manuscript text, SW prepared Figs. 1, 2, 3 and 4, PZ and RZ prepared Figs. 5 and 6. All authors reviewed the manuscript.

Corresponding author

Correspondence to ShaoRong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests. The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, S., Wang, S. et al. First-principles study of optical properties of monolayer h-BN and its defect structures under equibiaxial strain. Appl. Phys. A 128, 628 (2022). https://doi.org/10.1007/s00339-022-05723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05723-6

Keywords

Navigation