Skip to main content
Log in

RETRACTED ARTICLE: Solution combustion synthesis of CeO2 nanoparticles for excellent photocatalytic degradation of methylene blue

  • Published:
Applied Physics A Aims and scope Submit manuscript

This article was retracted on 15 December 2022

This article has been updated

Abstract

In this paper, the solution combustion synthesis (SCS) accompanied with calcination at 500 and 600 °C (Ce1 and Ce-2) was used for the synthesis of cerium(IV) oxide (CeO2) nanoparticles as a facile and low-cost method using Ce(NO3)3∙6H2O as cerium precursor and salicylic acid as oxidizer and fuel. CeO2 nanoparticles were characterized by FT-IR and UV–Vis spectroscopies, VSM, XRD, EDS, BET and TEM. The FT-IR and XRD results confirmed the pure and single crystalline phase of CeO2 nanoparticles. The UV–Vis spectra of CeO2 nanoparticles predicted a narrow and uniform particle size distribution due to a strong band that appeared at ≈ 244 nm. The ferromagnetic nature of the as-prepared CeO2 nanoparticles was proved by VSM. Moreover, the photocatalytic degradation of methylene blue (MB) dye under UV irradiation was investigated and at optimum conditions, the MB removal percentage reaches 93 and 96% for Ce-1 and Ce-2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. S. Chaudhary, P. Sharma, D. Singh, A. Umar, R. Kumar, Chemical and pathogenic cleanup of wastewater using surface functionalized CeO2 nanoparticles. ACS Sustain. Chem. Eng. 5, 6803–6816 (2017)

    Article  Google Scholar 

  2. K. Prasanna, P. Santhoshkumar, Y.N. Jo, I.N. Sivagami, S.H. Kang, Y.C. Joe, C.W. Lee, App. Surf. Sci. 449, 454–460 (2018)

    Article  ADS  Google Scholar 

  3. S. Rajeshkumar, P. Naik, Synthesis and biomedical applications of cerium oxide nanoparticles—a review. Biotech. Rep. 17, 1–5 (2018)

    Article  Google Scholar 

  4. Y. Fan, P. Li, B. Hu, T. Liu, Z. Huang, C. Shan, J. Cao, B. Cheng, W. Liu, Y. Tang, A smart photosensitizer-cerium oxide nanoprobe for highly selective and efficient photodynamic therapy. Inorg. Chem. 58, 7295–7302 (2019)

    Article  Google Scholar 

  5. A. Miri, M. Sarani, Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram. Int. 44, 12642–12647 (2018)

    Article  Google Scholar 

  6. S. Sebastiammal, A. Mariappan, K. Neyvasagam, A. Lesly Fathima, Annona muricata inspired synthesis of CeO2 nanoparticles and their antimicrobial activity. Mater. Today Proc. 9, 627–632 (2019)

    Article  Google Scholar 

  7. A.L. Popov, N.R. Popova, N.V. Tarakina, O.S. Ivanova, A.M. Ermakov, V.K. Ivanov, G.B. Sukhorukov, Intracellular delivery of antioxidant CeO2 nanoparticles via polyelectrolyte microcapsules. ACS Biomater. Sci. Eng. 4, 2453–2462 (2018)

    Article  Google Scholar 

  8. C. Tapeinos, M. Battaglini, M. Prato, G. La Rosa, A. Scarpellini, G. Ciofani, CeO2 nanoparticles-loaded pH-responsive microparticles with antitumoral properties as therapeutic modulators for osteosarcoma. ACS Omega 3, 8952–8962 (2018)

    Article  Google Scholar 

  9. Y. Zhang, F. Yang, R. Gao, W.-L. Dai, Manganese-doped CeO2 nanocubes as highly efficient catalysts for styrene epoxidation with TBHP. Appl. Surf. Sci. 471, 767–775 (2019)

    Article  ADS  Google Scholar 

  10. K. Negi, M. Kumar, G. Singh, S. Chauhan, M.S. Chauhan, Nanostructured CeO2 for selective-sensing and smart photocatalytic application. Ceram. Int. 44, 15281–15289 (2018)

    Article  Google Scholar 

  11. X. Yang, Y. Liu, J. Li, Y. Zhang, Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity. Matter. Lett. 241, 76–79 (2019)

    Article  Google Scholar 

  12. S. Gnanam, V. Rajendran, Facile sol-gel preparation of Cd-doped cerium oxide (CeO2) nanoparticles and their photocatalytic activities. J. Alloys Compd. 735, 1854–1862 (2018)

    Article  Google Scholar 

  13. R. Magudieshwaran, J. Ishii, K.C.N. Raja, C. Terashima, R. Venkatachalam, A. Fujishima, S. Pitchaimuthu, Green and chemical synthesized CeO2 nanoparticles for photocatalytic indoor air pollutant degradation. Mater. Lett. 239, 40–44 (2019)

    Article  Google Scholar 

  14. S. Xing, T. Li, Y. Gao, J. Liu, Insight into the mechanism for photocatalytic degradation of ciprofloxacin with CeO2. Optik Int. J. Light Electr. Opt. 183, 266–272 (2019)

    Article  Google Scholar 

  15. X. Wang, J. Wua, J. Wang, H. Xiao, B. Chen, R. Peng, M. Fu, L. Chen, D. Ye, W. Wen, Methanol plasma-catalytic oxidation over CeO2 catalysts: effect of ceria morphology and reaction mechanism. Chem. Eng. J. 369, 233–244 (2019)

    Article  Google Scholar 

  16. Y. Wang, X. Bai, F. Wang, S. Kang, C. Yin, X. Li, Nanocasting synthesis of chromium doped mesoporous CeO2 with enhanced visible-light photocatalytic CO2 reduction performance. J. Hazard. Mater. 372, 69–76 (2019)

    Article  Google Scholar 

  17. Z. Feng, Q. Ren, R. Peng, S. Mo, M. Zhang, M. Fua, L. Chen, D. Ye, Effect of CeO2 morphologies on toluene catalytic combustion. Catal. Today 332, 177–182 (2019)

    Article  Google Scholar 

  18. J. Malleshappa, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, S.C. Prashantha, B. Daruka Prasad, H. Raja Naika, K. Lingaraju, B.S. Surendra, Leucas aspera mediated multifunctional CeO2 nanoparticles: structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochim. Acta A 149, 452–462 (2015)

    Article  Google Scholar 

  19. Y. Huang, C. An, Q. Zhang, L. Zang, H. Shao, Y. Liu, Y. Zhang, H. Yuan, C. Wang, Y. Wang, Cost-effective mechanochemical synthesis of highly dispersed supported transition metal catalysts for hydrogen storage. Nano Energy 80, 105535 (2021)

    Article  Google Scholar 

  20. X. Zhang, Y. Tang, F. Zhang, C. Lee, A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016)

    Article  Google Scholar 

  21. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H.M. Cheng, Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018)

    Article  Google Scholar 

  22. S. Mu, Q. Liu, P. Kidkhunthod, X. Zhou, W. Wang, Y. Tang, Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. Nat. Sci. Rev. 8, nwaa178 (2020)

    Article  Google Scholar 

  23. L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia, S. Bodoardo, G. Leftheriotis, F. Bella, Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows. J. Mater. Chem. A 9, 19687–19691 (2021)

    Article  Google Scholar 

  24. O.M. Bankole, T.D. Olorunsola, A.S. Ogunlaja, Photocatalytic decontamination of toxic hexavalent chromium in water over graphitic carbon nitride supported sulfur nanoparticles. J. Photochem. Photobiol. A 405, 112934 (2021)

    Article  Google Scholar 

  25. M.A. Abu-Saied, M. Elnouby, T. Taha, M. El-shafeey, A.G. Alshehri, S. Alamri, H. Alghamdi, A. Shati, S. Alrumman, M. Al-Kahtani, M. Moustafa, Potential decontamination of drinking water pathogens through k-carrageenan integrated green bottle fly bio-synthesized silver nanoparticles. Molecules 25, 1936 (2020)

    Article  Google Scholar 

  26. N. Ameur, Z. Fandi, F. Taieb-Brahimi, G. Ferouani, S. Bedrane, R. Bachir, A novel approach of ceria nanotubes and plasmonic metal-doped ceria nanotubes application: anticorrosion and photodegradation potential. Appl. Phys. A 127, 162 (2021)

    Article  ADS  Google Scholar 

  27. L. Song, Y. Pang, Y. Zheng, L. Ge, Hydrothermal synthesis of novel g-C3N4/BiOCl heterostructure nanodiscs for efficient visible light photodegradation of Rhodamine B. Appl. Phys. A 123, 500 (2017)

    Article  ADS  Google Scholar 

  28. N. Bandaru, J. Shim, S.V. Prabhakar Vattikuti, Ch. Venkata Reddy, Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules. Appl. Phys. A 123, 396 (2017)

    Article  ADS  Google Scholar 

  29. M. Nasiruzzaman Shaikh, M.I. Ahmed, M. Bououdina, M. Ghers, R. Ghomri, (Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue. Appl. Phys. A 122, 895 (2016)

    Article  ADS  Google Scholar 

  30. X. Wang, Y. Ying, P. Hu, J. Lei, X. Peng, Au nanoparticle-decorated ultrathin CdS nanowires for high-efficiency photodegradation of organic dyes. Appl. Phys. A 120, 1291–1297 (2015)

    Article  ADS  Google Scholar 

  31. R. Prasad, K.D. Yadav, Use of response surface methodology and artificial neural network approach for methylene blue removal by adsorption onto water hyacinth. Water Conserv. Manag. 4, 83–89 (2021)

    Article  Google Scholar 

  32. Y. Liu, Q. Zhang, H. Yuan, K. Luo, J. Li, W. Hu, K. Bazaka, Comparative study of photocatalysis and gas sensing of ZnO/Ag nanocomposites synthesized by one- and two-step polymer-network gel processes. J. All. Compd. 868, 158723 (2021)

    Article  Google Scholar 

  33. X. Du, W. Tian, J. Pan, B. Hui, J. Sun, K. Zhang, Y. Xia, Piezo-phototronic effect promoted carrier separation in coaxial p–n junctions for self-powered photodetector. Nano Energy 92, 106694 (2022)

    Article  Google Scholar 

  34. C. Zhao, M. Xi, J. Huo, C. He, L. Fu, Electro-reduction of N2 on nanostructured materials and the design strategies of advanced catalysts based on descriptors. Mater. Today Phys. 22, 100609 (2022)

    Article  Google Scholar 

  35. Z.Q. Lu, F.Y. Zhang, H.L. Fu, H. Ding, L.Q. Chen, Rotational nonlinear double-beam energy harvesting. Smart Mater. Struct. 31, 025022 (2022)

    Article  ADS  Google Scholar 

  36. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987–6041 (2016)

    Article  Google Scholar 

  37. Z. Zhang, F. Yang, H. Zhang, T. Zhang, H. Wang, Y. Xu, Q. Ma, Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater. Charact. 171, 110732 (2021)

    Article  Google Scholar 

  38. K. Sathupun, K. Kotmool, P. Tsuppayakorn-aek, P. Pluengphon, A. Majumdar, T. Bovornratanaraks, Fe-doped effects on phase transition and electronic structure of CeO2 under compressed conditions from ab initio calculations. Appl. Phys. A 127, 784 (2021)

    Article  ADS  Google Scholar 

  39. X. Niu, Controlled hydrothermal synthesis of CeO2 nanospheres and their excellent magnetic properties. Appl. Phys. A 123, 236 (2017)

    Article  ADS  Google Scholar 

  40. X.J. Wen, C.G. Niu, L. Zhang, C. Liang, G.M. Zeng, A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. App. Catal. B. Environ. 221, 701–714 (2018)

    Article  Google Scholar 

  41. N. Zhang, R. Criminna, M. Pagliaro, Y.J. Xu, Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 43, 5276–5287 (2014)

    Article  Google Scholar 

  42. Q. Li, Z. Chen, H. Wang, H. Yang, T. Wen, S. Wang, B. Hu, X. Wang, Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ. 792, 148546 (2021)

    Article  ADS  Google Scholar 

  43. S. Yu, H. Pang, S. Huang, H. Tang, S. Wang, M. Qiu, Z. Chen, H. Yang, G. Song, D. Fu, B. Hu, X. Wang, Recent advances in metal-organic framework membranes for water treatment: a review. Sci. Total Environ. 800, 149662 (2021)

    Article  ADS  Google Scholar 

  44. S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, L. Chen, G. Song, M. Qiu, X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: a review. Environmen. Pollut. 291, 118076 (2021)

    Article  Google Scholar 

  45. British National Formulary: BNF 69 (69 ed.). British Medical Association. 2015. p. 34. ISBN 9780857111562

  46. A. Iqbal, A. Farrukh, New strategies combating bacterial infection (Wiley, New York, 2008), p. 91. (ISBN 9783527622948)

    Google Scholar 

  47. World Health Organization (2019), World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization. hdl:10665/325771. WHO/MVP/EMP/IAU/2019.06. License: CC BY-NC-SA 3.0 IGO

  48. C. Xu, G.P. Rangaiah, X.S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Ind. Eng. Chem. Res. 53, 38 (2014)

    Article  Google Scholar 

  49. J. Lin, Z. Luo, J. Liu, P. Li, Photocatalytic degradation of methylene blue in aqueous solution by using ZnO–SnO2 nanocomposites. Mater. Sci. Semiconduct. Process. 87, 24–31 (2018)

    Article  Google Scholar 

  50. H. Anh, L. Le, T. Linh, S. Chin, J. Jurng, Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon. Powder Technol. 225, 167–175 (2012)

    Article  Google Scholar 

  51. M.G. Kim, J.E. Lee, K.S. Kim, J.M. Kang, J.H. Lee, K.H. Kim, M. Cho, S.G. Lee, Photocatalytic degradation of methylene blue under UV and visible light by brookite–rutile bi-crystalline phase of TiO2. New J. Chem. 45, 3485–3497 (2021)

    Article  Google Scholar 

  52. Z. Guo, G. Wang, H. Fu, P. Wang, J. Liao, A. Wang, Photocatalytic degradation of methylene blue by a cocatalytic PDA/TiO2 electrode produced by photoelectric polymerization. RSC Adv. 10, 26133–26141 (2020)

    Article  ADS  Google Scholar 

  53. N.V. Hung, B.T. Minh Nguyet, N.H. Nghi, D.Q. Khieu, Photocatalytic degradation of methylene blue by using ZnO/longan seed activated carbon under visible-light region. J. Inorg. Organomet. Polym. Mater. 31, 446–459 (2021)

    Article  Google Scholar 

  54. A. Raees, M.A. Jamal, I. Ahmed, M. Silanpaa, T.S. Algarni, Synthesis and characterization of CeO2/CuO nanocomposites for photocatalytic degradation of methylene blue in visible light. Coatings 11, 305 (2021)

    Article  Google Scholar 

  55. D. Majumder, I. Chakraborty, K. Mandal, S. Roy, Facet-dependent photodegradation of methylene blue using pristine CeO2 nanostructures. ACS Omega 4, 4243–4251 (2019)

    Article  Google Scholar 

  56. T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju, H. Rajanaika, Synthesis and characterization of CeO2 nanoparticles via solution combustion method for photocatalytic and antibacterial activity studies. ChemistryOpen 4, 146–154 (2015)

    Article  Google Scholar 

  57. B. Dong, L. Li, Z. Dong, R. Xu, Y. Wu, Fabrication of CeO2 nanorods for enhanced solar photocatalysts. Int. J. Hydr. Energy 43, 5275–5282 (2018)

    Article  Google Scholar 

  58. R. Ma, S. Zhang, T. Wen, P. Gu, L. Li, G. Zhao, F. Niu, Q. Huang, Z. Tang, X. Wang, A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal. Today 335, 20–30 (2019)

    Article  Google Scholar 

  59. S. Safat, F. Buazar, S. Albukhaty, S. Matroodi, Enhanced sunlight photocatalytic activity and biosafety of marine-driven synthesized cerium oxide nanoparticles. Sci. Rep. 11, 14734 (2021)

    Article  ADS  Google Scholar 

  60. P.K. Sharma, O.P. Pandey, Effect of processing parameters on structural and optical properties of CeO2 nanoparticles for the removal of crystal violet dye. J. Sol-Gel Sci. Technol. 99, 75–91 (2021)

    Article  Google Scholar 

  61. M. Mittal, A. Gupta, O.P. Pandey, Role of oxygen vacancies in Ag/Au doped CeO2 nanoparticles for fast photocatalysis. Sol. Energy 165, 206–216 (2018)

    Article  ADS  Google Scholar 

  62. W.C. Chanu, A. Gupta, M.K. Singh, O.P. Pandey, Group V elements (V, Nb and Ta) doped CeO2 particles for efficient photo-oxidation of methylene blue dye. J. Inorg. Organomet. Polym. Mater. 31, 636–647 (2021)

    Article  Google Scholar 

  63. A.D. Khalaji, Z. Palang Sangdevini, S.M. Mousavi, M. Jarosova, P. Machek, Benzoic acid-functionalized α-Fe2O3 nanoparticles: synthesis, characterization, magnetic and optical properties. Asian J. Nanosci. Mater. 4, 137–146 (2021)

    Google Scholar 

  64. A.D. Khalaji, Synthesis, characterization and optical properties of Co3O4 nanoparticles. Asian J. Nanosci. Mater. 2, 186–190 (2019)

    Google Scholar 

  65. A.D. Khalaji, M. Ghorbani, Thermal studies of iron(II) Schiff base complexes: new precursor for preparation of α-Fe2O3 nanoparticles via solid-state thermal decomposition. Chem. Method. 4, 532–542 (2020)

    Article  Google Scholar 

  66. A.D. Khalaji, M. Ghorbani, M. Dusek, V. Eigner, The bis(4-methoxy-2-hydroxyvenzophenone) copper(II) complex used as a new precursor for preparation of CuO nanoparticles. Chem. Method. 4, 143–151 (2020)

    Article  Google Scholar 

  67. A. Lassoued, M.S. Lassoued, B. Dkhil, S. Ammar, A. Gadri, Synthesis, photoluminescence and magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods. Phys. E. 101, 212–219 (2018)

    Article  Google Scholar 

  68. F. Ziaadini, A. Mostafavi, T. Shamspur, F. Fathirad, Photocatalytic degradation of methylene blue from aqueous solution using Fe3O4@SiO2@CeO2 core-shell magnetic nanostructure as an effective catalyst. Adv. Environ. Technol. 2, 127–132 (2019)

    Google Scholar 

  69. T. Ahmad, J. Iqbal, M.A. Bustam, M. Zulfiqar, N. Muhammad, B.M. Al Hajeri, M. Irfan, H.M.A. Asghar, S. Ullah, Phytosynthesis of cerium nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. J. Mol. Struct. 1217, 128292 (2020)

    Article  Google Scholar 

  70. H. Pei, H. Zhang, Z. Mo, R. Guo, N. Liu, Q. Jia, Q. Gao, Highly efficient photocatalytic degradation of rhodamine B by conical graphene quantum dots/cerium oxide composite. Ceram. Int. 46, 3827–3836 (2020)

    Article  Google Scholar 

  71. F. Mashkoor, A. Nasar, Magsorbents: potential candidates in wastewater treatment technology—a review on the removal of methylene blue dye. J. Mag. Mag. Mater. 500, 166408 (2020)

    Article  Google Scholar 

  72. C. Wang, J. Li, X. Lv, Y. Zhang, G. Guo, Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 25, 2831–2867 (2014)

    Article  Google Scholar 

  73. J. Zhang, C. Su, X. Xie, P. Liu, Md. Enamul Huq, Enhanced visible light photocatalytic degradation of dyes in aqueous solution activated by HKUST-1: performance and mechanism. RSC Adv. 10, 37028–37034 (2020)

    Article  ADS  Google Scholar 

  74. Z.D. Meng, L. Zhu, S. Ye, T. Ghosh, K. Ullah, V. Nikam, W.C. Oh, Heterogeneous photocatalytic degradation of anionic and cationic dyes over Fe-fullerene/TiO2 under visible light. Asian J. Chem. 25, 6001–6007 (2013)

    Article  Google Scholar 

  75. S.M. Moosavi, R.Y. Man Li, C.W. Lai, Y. Yusof, S. Gan, O. Akbarzadeh, Z.Z. Chowhury, X.G. Yue, M.R.B. Johan, Methylene blue dye photocatalytic degradation over synthesised Fe3O4/AC/TiO2 nano-catalyst: degradation and reusability studies. Nanomaterials 10, 2360 (2020)

    Article  Google Scholar 

  76. F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 8, 7104 (2018)

    Article  ADS  Google Scholar 

  77. A. Salhi, A. Aarfane, S. Tahiri, L. Khamliche, M. Bensitel, F. Bentiss, M. El Krati, Study of the photocatalytic degradation of methylene blue dye using titanium-doped hydroxyapatite. Mediterr. J. Chem. 4, 59–67 (2015)

    Article  Google Scholar 

  78. K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Polish J. Environ. Stud. 19, 685–691 (2010)

    Google Scholar 

  79. H.R. Pouretedal, A. Kadkhodaie, Synthetic CeO2 nanoparticles catalysis of methylene blue photodegradation: kinetic and mechanism. Chin. J. Catal. 31, 1328–1334 (2010)

    Article  Google Scholar 

  80. G. Sorekine, G. Anduwan, M.N. Waimbo, H. Osora, S. Velusamy, S. Kim, Y.S. Kim, J. Charles, Photocatalytic studies of copper oxide nanostructures for the degradation of methylene blue under visible light. J. Mol. Struct. 1248, 131487 (2022)

    Article  Google Scholar 

  81. A. George, D.M.A. Raj, X. Venci, A. Dhayal Raj, A. Albert Irudayaraj, R.L. Josephine, S. John Sundaram, A.M. Al-Mohaimeed, D.A. Al Farraj, T.-W. Chen, K. Kaviyarasg, Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ. Res. 203, 111880 (2022)

    Article  Google Scholar 

  82. R. Elshypany, H. Selim, K. Zakaria, A.H. Moustafa, S.A. Sadeek, S.I. Sharaa, P. Raynaud, A.A. Nada, Elaboration of Fe3O4/ZnO nanocomposite with highly performance photocatalytic activity for degradation methylene blue under visible light irradiation. Environ. Technol. Innov. 23, 101710 (2021)

    Article  Google Scholar 

  83. S. Roguai, A. Djelloul, Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanoparticles prepared by simple coprecipitation method. Solid State Commun. 334–335, 114362 (2021)

    Article  Google Scholar 

  84. L. Guo, N. Okinaka, L. Zhang, S. Watanabe, Molten salt-assisted shape modification of CaFe2O4 nanorods for highly efficient photocatalytic degradation of methylene blue. Opt. Mater. 119, 111295 (2021)

    Article  Google Scholar 

  85. D. Chahar, S. Taneja, S. Bisht, S. Kesarwani, P. Thakur, A. Thakur, P.B. Sharma, Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J. All. Compd. 851, 156878 (2021)

    Article  Google Scholar 

  86. A. Karati, T. Parida, J. Gupta, H.K. Adigilli, P.H. Borse, J. Joardar, Band-gap engineering in novel delafossite-type multicomponent oxides for photocatalytic degradation of methylene blue. Mater. Res. Bull. 137, 111181 (2021)

    Article  Google Scholar 

  87. T.O. Guidolin, N.M. Possolli, M.B. Polla, T.B. Wermuth, T.F. de Oliveira, S. Eller, O.R.K. Montedo, S. Arcarom, M.A.P. Cechinel, Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles. J. Clean. Product. 318, 128556 (2021)

    Article  Google Scholar 

  88. C. Kunjachan, M. Kurian, Cerium oxide-based nanostructures as efficient catalysts for transesterification of mthylacetate with n-butanol. Clean. Eng. Technol. 4, 100232 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760). The author ADK gratefully acknowledge of Golestan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Dehno Khalaji.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s00339-022-06310-5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, S.A., Machek, P., Abdelbasset, W.K. et al. RETRACTED ARTICLE: Solution combustion synthesis of CeO2 nanoparticles for excellent photocatalytic degradation of methylene blue. Appl. Phys. A 128, 475 (2022). https://doi.org/10.1007/s00339-022-05532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05532-x

Keywords

Navigation