Skip to main content
Log in

Photosensitivity properties of Eu-doped SnS2 thin films deposited by cost-effective nebulizer spray pyrolysis technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The current research explores the outcome of europium doping on the structure, morphology, electrical conductivity and optoelectronic characteristics of SnS2 thin films deposited on glass substrates by nebulizer spray technique. X-ray diffraction analysis substantiates the presence of hexagonal structure in both pure and Eu-doped SnS2 thin films with the highly preferred orientation diffracted from the plane (002). It shows the intensity of the predominant peak is highest for 2% Eu-doped SnS2 thin film. From the XRD data, the crystallite size was found to be highest for 2% SnS2:Eu, and same sample showed a less dislocation density of 0.97 × 1015 lines/m2 and microstrain of 0.081 × 10–3/lines2 m4. The crystallite size first increases with increasing doping concentration of Eu (0–2%), then decreases for higher concentrations. The SEM and AFM micro images reveal the agglomeration of grains at higher Eu concentration. The compositional analysis through EDAX studies supports the presence of Eu, Sn and S. The SnS2 optical band gap value is found to vary from 2.70 to 2.91 eV as the Eu doping is increased from 2 to 6%. All the SnS2 thin film samples manifest a n-type conductivity as authenticated from Hall studies and a low resistivity of 4.34 × 10−1 cm with an elevated carrier concentration of 5.43 × 1017 cm−3, respectively, was observed for SnS2:Eu (2 wt%). The same sample established a higher responsivity (41.64 × 10−3 AW−1), competent external quantum efficiency (97.24%), and a better detectivity (40.88 × 108 Jones). Hence, the 2% Eu-doped SnS2 film is recognized to be best suited for the fabrication of high-speed optoelectronic devices. This paper also discusses a putative mechanism for photo-detector performance under air and UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Afzaal, P. O’Brien, Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J. Mater. Chem. 16, 1597–1602 (2006)

    Article  Google Scholar 

  2. S. VaradharajaPerumal, D. Alagarasan, R. Ganesan, M.N. Satyanarayan, G. Hegde, Controlled growth of 1D-ZnO nanotubes using one-step hot plate technique for CZTS heterojunction solar cells. Mater. Sci. Semicond. Process. 106, 104763 (2020)

    Article  Google Scholar 

  3. A. Bafekry, M. Shahrokhi, A. Shafique, H.R. Jappor, M.M. Fadlallah, C. Stampfl, M. Ghergherehchi, M. Mushtaq, S.A. HosseinFeghhi, D. Gogova, Semiconducting chalcogenide alloys based on the (Ge, Sn, Pb) (S, Se, Te) formula with outstanding properties: a first-principles calculation study. ACS Omega 6(14), 9433–9441 (2021)

    Article  Google Scholar 

  4. S. Roychowdhury, M. Samanta, S. Perumal, K. Biswas, Germanium chalcogenide thermoelectrics: electronic structure modulation and low lattice thermalconductivity. Chem. Mater. 30, 5799–5813 (2018)

    Article  Google Scholar 

  5. J. Li, C. Nie, F. Sun, L. Tang, Z. Zhang, J. Zhang, Y. Zhao, J. Shen, S. Feng, H. Shi, X. Wei, Enhancement of the photo response of monolayer MoS2 photodetectors induced by a nanoparticle grating. ACS Appl. Mater. Interfaces 12, 8429–8436 (2020)

    Article  Google Scholar 

  6. T.H. Tsai, Z.Y. Liang, Y.C. Lin, C.C. Wang, K.I. Lin, K. Suenaga, P.W. Chiu, Photo gating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano 14, 4559–4566 (2020)

    Article  Google Scholar 

  7. J. Chen, Q. Wang, Y. Sheng, G. Cao, P. Yang, Y. Shan, F. Liao, Z. Muhammad, W. Bao, L. Hu, R. Liu, C. Cong, Z.J. Qiu, High-performance WSe2 photodetector based on a laser-induced p-n Junction. ACS Appl. Mater. Interfaces 11, 43330–43336 (2019)

    Article  Google Scholar 

  8. S. Das, K.J. Sarkar, B. Pal, H. Mondal, S. Pal, R. Basori, P. Banerji, SnS2/Si nanowire vertical heterostructure for high performance ultra-low power broadband photodetector with excellent detectivity. J. Appl. Phys. 129, 53105–53112 (2021)

    Article  ADS  Google Scholar 

  9. S.Y. Cheng, G.N. Chen, Y. Chen et al., Structure and properties of SnS films prepared by electro-deposition in presence of EDTA. Opt. Mater. 29, 439 (2006)

    Article  ADS  Google Scholar 

  10. T. Jiang, G.A. Ozin, New directions in tin sulfide materials chemistry. J. Mater. Chem. 8, 1099–1108 (1998)

    Article  Google Scholar 

  11. C. Julien, M. Eddreif, I. Samaras, M. Balkanski, Resonant Raman scattering studies of SnS2 crystals. Mater. Sci. Eng. B 15, 70 (1992)

    Article  Google Scholar 

  12. Y.T. Qien, Introduction to Crystal Chemistry, vol. 280, 2nd edn. (Press of University of Science and Technology of China, Hefei, 1999)

    Google Scholar 

  13. G. Domingo, R.S. Itoga, C.R. Cannewurf, Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev. 143, 536 (1966)

    Article  ADS  Google Scholar 

  14. S. Polarz, B. Smarsly, C. Goltner, M. Antonietti, The interplay of colloidal organization and oxo cluster chemistry: polyoxometalate-silica hybrids—materials with a nano chemical function. Adv. Matter. 12, 1503 (2000)

    Article  Google Scholar 

  15. M.J. Lanzafame, J. Michael, Synthesis of SnS2 nanocrystals via a solvothermal process. Diss. Abstr. Int. B 54(1), 263 (1993)

    Google Scholar 

  16. J. Morales, V.C. Perez, J. Santos, L.J. Tirado, Ultra-high vacuum deposition of Na on SnS2 in single crystal and powder forms: evidence of a decomposition reaction. J. Electrochem. Soc. 143(a), 2847 (1996)

    Article  ADS  Google Scholar 

  17. G. Wu, Y. Cheng, K. Wang, Y. Wang, A. Feng, Fabrication and characterization of OMMt/BMI/CE composites with low dielectric properties and high thermal stability for electronic packaging. J. Mater. Sci. 27, 5592–5599 (2016)

    Google Scholar 

  18. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@ C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)

    Article  Google Scholar 

  19. G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, In situ synthesis and preparation of TiO2/polyimide composite containing phenolphthalein functional group. J. Mater. Sci. Mater. Electron. 28, 6544–6551 (2017)

    Article  Google Scholar 

  20. A.M.S. Arulanantham, S. Valanarasu, S. Rex Rosario, A. Kathalingam, M. Shkir, V. Ganesh, I.S. Yahia, Nebulizer spray assisted chemical vapour deposited (NACVD) tin disulfide (SnS2) thin films for solar cell window layer applications. Mater. Res. Express 6(9), 096422 (2019)

    Article  ADS  Google Scholar 

  21. D.F. Crabtree, The luminescence of SnO2-Eu3. J. Phys. D Appl. Phys. 8(1), 107–116 (1975)

    Article  ADS  Google Scholar 

  22. D.F. Crabtree, Luminescence and charge compensation in SnO2 doped with rare earth ions. J. Phys. D Appl. Phys. 11(11), 1543–1551 (1978)

    Article  ADS  Google Scholar 

  23. G. Wang, Y. Yang, Q. Mu, Y. Wang, Preparation and optical properties of Eu3+-doped tin oxide nanoparticles. J. Alloys Compd. 498(1), 81–87 (2010)

    Article  Google Scholar 

  24. E.A. Morais, L.V.A. Scalvi, L.P. Ravaro, S.M. Li, E.A. Floriano, Optical and transport properties of rare-earth trivalent ions located at different sites in sol–gel SnO2. J. Phys. Conf. Ser. 249, 012005 (2010)

    Article  Google Scholar 

  25. J. Chen, J. Wang, F. Zhang, D. Yan, G. Zhang, R. Zhuo, P. Yan, Structure and photoluminescence property of Eu-doped SnO2 nanocrystalline powders fabricated by sol–gel calcination process. J. Phys. D Appl. Phys. 41(10), 105306 (2008)

    Article  ADS  Google Scholar 

  26. L.S. Price, I.P. Parkin, A.M.E. Handy, R.J.H. Clark, Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass. Chem. Mater. 11, 1792–1799 (1999)

    Article  Google Scholar 

  27. A. Ortiz, S. Lopez, Spray pyrolysis deposition of SnxSy thin films. Semicond. Sci. Technol. 9, 2130 (1994)

    Article  ADS  Google Scholar 

  28. K.W. Nnebesney, G.E. Collins, P.A. Lee, L.K. Chau, J. Danziger, E. Osburn, N.R. Armstrong, Structural, morphological and optical properties of SnS2 thin films by nebulized spray pyrolysis technique. Chem. Mater. 3, 829 (1991)

    Google Scholar 

  29. J. George, K.S. Joseph, Absorption edge measurements in tin disulphide thin films. J. Phys. D 15, 1109–1116 (1982)

    Article  ADS  Google Scholar 

  30. C.D. Lokhande, A chemical method for tin disulphide thin film deposition. J. Phys. D 23, 1703 (1990)

    Article  ADS  Google Scholar 

  31. S.K. Panda, A. Antonakos, Optical properties of nanocrystalline SnS2 thin films. Mater. Res. Bull. 42, 576 (2007)

    Article  Google Scholar 

  32. I.B. Kherchachi, H. Saidi, A. Attaf, N. Attaf, A. Bouhdjar, H. Bendjdidi, Y. Benkhetta, R. Azizi, M. Jlassi, Influence of solution flow rate on the properties of SnS2 films prepared by ultrasonic spray. Optik 127, 4043–4046 (2016)

    Article  ADS  Google Scholar 

  33. S.K. Panda, A. Antonakos, E. Liarokapis, S. Bhattacharya, S. Chaudhuri, Optical properties of nanocrystalline SnS2 thin films. Mater. Res. Bull. 42, 576–583 (2007)

    Article  Google Scholar 

  34. S. Al-Shomar, Investigation the effect of doping concentration in Ruthenium-doped TiO2 thin films for solar cells and sensors applications. Mater. Res. Express. 7(3), 036409 (2020)

    Article  ADS  Google Scholar 

  35. R. Etefagh, N. Shahtahmassebi, M.R. Benam, M.M. BagheriMohagheghi, Effect of Zn doping on optical properties and photoconductivity of SnS2 nanocrystalline thin films. Indian J. Phys. 88(6), 563–570 (2014)

    Article  ADS  Google Scholar 

  36. H. Kafashan, R. Ebrahimi-Kahrizsangi, F. Jamali-Sheini, R. Yousefi, Effect of Al doping on the structural and optical properties of electrodeposited SnS thin films. Phys. Status Solidi A 213, 1302–1308 (2016)

    Article  ADS  Google Scholar 

  37. Y. Jing, X. Cheng-Yan, Y. Li, F. Zhou, X.S. Chen, H. Ping-An, L. Zhen, Ternary SnS2x Sex alloys nanosheets and nanosheet assemblies with tunable chemical compositions and band gaps for photodetector applications. Sci. Rep. 5, 17109 (2016)

    Google Scholar 

  38. K.D.A. Kumar, S. Valanarasu, V. Tamilnayagam, L. Amalraj, Structural, morphological and optical properties of SnS2 thin films by nebulized spray pyrolysis technique. J. Mater Sci. 28(19), 14209–14216 (2017)

    Google Scholar 

  39. K. Santhosh Kumar, A. GowriManohari, C. Lou, T. Mahalingam, S. Dhanapandian, Influence of Cu dopant on the optical and electrical properties of spray deposited tin sulphide thin films. Vacuum 128, 226 (2016)

    Article  ADS  Google Scholar 

  40. A. Bokare, A. Sanap, M. Pai, S. Sabharwal, A.A. Athawale, Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation. Colloids Surf B Bio Interfaces. 102, 273 (2013)

    Article  Google Scholar 

  41. D. Wojcieszak, M. Mazur, M. Kurnatowska, D. Kaczmarek, J. Domaradzki, L. Kepinski, K. Chojnacki, Influence of Nd-doping on photocatalytic properties of TiO2 nanoparticles and thin film coatings. Int J Photo Energy. 2014, 1–10(2014)

  42. N. Farhad, J.-S. Farid, Y. Ramin, Photocurrent properties of undoped and Pb-doped SnS nano structures grown using electrodeposition method. J. Electron. Mater. 44(12), 4734 (2015)

    Article  Google Scholar 

  43. N. Anitha, M. Anitha, K. Saravanakumar, S. Valanarasu, L. Amalraj, Fabrication of antimony doped tin disulfide thin films by an inexpensive, modified spray pyrolysis technique using nebulizer. J. Phys. Chem. Solids 119, 9–18 (2018)

    Article  ADS  Google Scholar 

  44. T. Sall, M. Mollar, B. Mari, Substrate influences on the properties of SnS thin films deposited by chemical spray pyrolysis technique for photovoltaic applications. J. Mater. Sci. 51(16), 7607–7613 (2016)

    Article  ADS  Google Scholar 

  45. V. An, M. Dronova, A. Zakharov, Optical and AFM studies on p-SnS thin films deposited by magnetron sputtering. Chalcogenide Lett. 12, 483–487 (2015)

    Google Scholar 

  46. T.S. Reddy, M.S. Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6(98), 95680–95692 (2016)

    Article  ADS  Google Scholar 

  47. A.G. Manohari, S. Dhanapandian, C. Manoharan, K.S. Kumar, T. Mahalingam, Physical properties of spray pyrolyzed Ag-doped SnS thin films for opto-electronic applications. Mater. Sci. Semicond. Process. 17, 138–142 (2014)

    Article  Google Scholar 

  48. A.A. Al-Ghamdi, S.A. Khan, S. Al-Heniti, F.A. Al-Agel, T. Al-Harbi, M. Zulfequar, Effects of laser irradiation on optical properties of amorphous and annealed Ga15Se81In4 and Ga15Se79In6 chalcogenide thin films. J. Alloys Compd. 505, 229–234 (2010)

    Article  Google Scholar 

  49. M. Behera, R. Naik, C. Sripan, R. Ganesan, N.C. Mishra, Influence of Bi content on linear and nonlinear optical properties of As40Se60−xBix chalcogenide thin films. Curr. Appl. Phys. 19, 884–893 (2019)

    Article  ADS  Google Scholar 

  50. H.R. Chandrasekhar, D.G. Mead, Long-wavelength phonons in mixed-valence semiconductor, SnIISnIVS3. Phys. Rev. B. 19, 932–937 (1979)

    Article  ADS  Google Scholar 

  51. J. Tauc, Amorphous and Liquid Semiconductors, 171 (Plenum Press, Boston, 1974)

    Book  Google Scholar 

  52. S. Gedi, V.R.M. Reddy, C. Park, J. Chan-Wook, R. Reddy, Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt. Mater. 42, 468–475 (2015)

    Article  ADS  Google Scholar 

  53. H.L. Zhuang, R.G. Hennig, Theoretical perspective of photocatalytic properties of single-layer SnS. J. Phys. Rev. B 88, 115314 (2013)

    Article  ADS  Google Scholar 

  54. K.T.R. Reddy, G. Sreedevi, R.W. Miles, Single phase, large grain, p-conductivity-type SnS layers produced using the thermal evaporation method. J. Mater. Sci. Eng. A3(3A), 182–186 (2013)

    Google Scholar 

  55. I.B. Kherchachi, H. Saidi, A. Attaf, N. Attaf, A. Bouhdjar, H. Bendjdidi, Y. Benkhetta, R. Azizi, M. Jlassi, The synthesis, characterization and phase stability of tin sulfides (SnS2, SnS and Sn2S3) films deposited by ultrasonic spray. Optik 127, 4043–4046 (2016)

    Article  ADS  Google Scholar 

  56. S. Gedi, V. Reddy, M. Reddy, C. Park, J. Chan-Wook, K.T. Ramakrishna Reddy, Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt. Mater. 42, 468–475 (2015)

    Article  ADS  Google Scholar 

  57. X. Zhe, W. Jihuai, W. Tongyue, Q. Bao, X. He, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, Tuning the Fermi level of TiO2 electron transport layer through europium doping for highly efficient perovskite solar cells. Energy Technol. 5, 1820–1826 (2017)

    Article  Google Scholar 

  58. K.S. Kumar, A.G. Manohari, S. Dhanapandian, T. Mahalingam, Physical properties of spray pyrolyzed Ag-doped SnS thin films for opto-electronic applications. Mater. Lett. 131, 167–170 (2014)

    Article  Google Scholar 

  59. B. Murali, S.B. Krupanidhi, Facile synthesis of Cu2CoSnS4 nanoparticles exhibiting red-edge-effect: application in hybrid photonic devices. J. Appl. Phys. 114(114), 144312 (2013)

    Article  ADS  Google Scholar 

  60. T.S. Reddy, M.C. Santhosh Kumar, Co-evaporated SnS thin films for visible light photodetector applications. RSC Adv. 6, 95680–95692 (2016)

    Article  ADS  Google Scholar 

  61. M. Devika, N. Koteeswara Reddy, F. Patolsky, K.R. Gunasekhar, Ohmic contacts to SnS films: selection and estimation of thermal stability. J. Appl. Phys. 104, 124503 (2008)

    Article  ADS  Google Scholar 

  62. H.W. Jang, J.L. Lee, Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN. Appl. Phys. Lett. 85, 24 (2004)

    Article  Google Scholar 

  63. K.V. Sopiha, O.I. Malyi, C. Persson, Wu. Ping, ACS Appl. Mater. Interfaces 13(28), 33664–33676 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors from KKU express their appreciation to the Deanship of Scientific Research at King Khalid University, for funding this work through the research groups program under Deanship of Scientific Research, King Saud University, Grant number R.G.P.2/112/41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. S. Arulanantham.

Ethics declarations

Conflict of interest

No conflicts of interests exist between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulanantham, A.M.S., Raj, P.M., Gunavathy, K.V. et al. Photosensitivity properties of Eu-doped SnS2 thin films deposited by cost-effective nebulizer spray pyrolysis technique. Appl. Phys. A 128, 364 (2022). https://doi.org/10.1007/s00339-022-05491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05491-3

Keywords

Navigation