Skip to main content

Advertisement

Log in

Bimodal multilayer nanostructure based on vanadium dioxide phase transition: absorber and hot electron photodetector

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, interest in the use of hot electron photodetectors (HEPDs) for energy harvesting has increased. In this paper, we introduce a switchable structure consisting of an absorber and metal/semiconductor Schottky-junction HEPD that incorporates a phase change material in the design. The structure is a purely planer configuration composed of a vanadium dioxide (VO2)/molybdenum disulfide (MoS2)/photonic crystal-distributed Bragg reflector (PC-DBR). VO2 is a phase change material that exhibits a reversible semiconductor to metal phase transition at the critical temperature of 68 °C. The nanostructure response relies on the VO2 phase transition under thermal heating. The transition of the VO2 phase from the semiconductor to the metal phase causes the formation of the Schottky-junction between the VO2/MoS2 interface, causing the structure to switch from the absorber to the hot electron photodetector in the near infrared region. In addition to, the switchable absorber–HEPD response; the absorption–photoresponsivity shows spectral tunability via the chosen thickness of the VO2 and MoS2 layers. This hybrid nanostructure is also sensitive to the light polarization state of both TE and TM modes. The proposed hybrid nanostructure is a promising candidate for switchable absorber–HEPD structures, with applications as switchable hot electron-based photovoltaic and sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. D. Liu, D. Yang, Y. Gao, J. Ma, R. Long, C. Wang, Y. Xiong, ACIE. 55, 4577 (2016)

    Article  Google Scholar 

  2. C. Clavero, Nat. Photonics. 8, 95 (2014)

    Article  ADS  Google Scholar 

  3. P.J. Schuck, Nat. Nanotechnol. 8, 799 (2013)

    Article  ADS  Google Scholar 

  4. A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. Proietti Zaccaria, M.I. Stockman, E. Di Fabrizio, Nat. Nanotechnol. 8, 845 (2013)

    Article  ADS  Google Scholar 

  5. W. Li, J. Valentine, Nano Lett. 14, 3510 (2014)

    Article  ADS  Google Scholar 

  6. L. Wen, Y. Chen, L. Liang, Q. Chen, ACS Photonics 5, 581 (2018)

    Article  Google Scholar 

  7. W. Wang, A. Klots, D. Prasai, Y. Yang, K.I. Bolotin, J. Valentine, Nano Lett. 15, 7440 (2015)

    Article  ADS  Google Scholar 

  8. H. Chalabi, D. Schoen, M.L. Brongersma, Nano Lett. 14, 1374 (2014)

    Article  ADS  Google Scholar 

  9. W. Li, Z.J. Coppens, L.V. Besteiro, W. Wang, A.O. Govorov, J. Valentine, Nat. Commun. 6, 8379 (2015)

    Article  ADS  Google Scholar 

  10. S. Mubeen, J. Lee, N. Singh, S. Krämer, G.D. Stucky, M. Moskovits, Nat. Nanotechnol. 8, 247 (2013)

    Article  ADS  Google Scholar 

  11. S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011)

    Article  ADS  Google Scholar 

  12. C. Scales, P. Berini, IEEE J. Quantum Electron. 46, 633 (2010)

    Article  ADS  Google Scholar 

  13. T.P. White, K.R. Catchpole, Appl. Phys. Lett. 101, 073905 (2012)

    Article  ADS  Google Scholar 

  14. B.Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, N.J. Halas, Nat. Commun. 6, 7797 (2015)

    Article  ADS  Google Scholar 

  15. X.F. Li, S.F. Yu, Plasmonics 5, 389 (2010)

    Article  Google Scholar 

  16. X.F. Li, S.F. Yu, Opt. Lett. 35, 2535 (2010)

    Article  ADS  Google Scholar 

  17. R. Sundararaman, P. Narang, A.S. Jermyn, W.A. Goddard III., H.A. Atwater, Nat. Commun. 5, 5788 (2014)

    Article  ADS  Google Scholar 

  18. M.L. Brongersma, N.J. Halas, P. Nordlander, Nat. Nanotechnol. 10, 25 (2015)

    Article  ADS  Google Scholar 

  19. M.W. Knight, Y. Wang, A.S. Urban, A. Sobhani, B.Y. Zheng, P. Nordlander, N.J. Halas, Nano Lett. 13, 1687 (2013)

    Article  ADS  Google Scholar 

  20. M. Knight, H. Sobhani, P. Nordlander, N. Halas, Science 332, 702 (2011)

    Article  ADS  Google Scholar 

  21. K. Ueno, H. Misawa, NPG Asia Mater. 5, e61 (2013)

    Article  Google Scholar 

  22. K.T. Lin, H.L. Chen, Y.S. Lai, C.C. Yu, Nat. Commun. 5, 3288 (2014)

    Article  ADS  Google Scholar 

  23. A. Sobhani, M.W. Knight, Y. Wang, B. Zheng, N.S. King, L.V. Brown, Z. Fang, P. Nordlander, N.J. Halas, Nat. Commun. 4, 1643 (2013)

    Article  ADS  Google Scholar 

  24. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. Levy, Opt. Express. 20, 28594 (2012)

    Article  ADS  Google Scholar 

  25. I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, A.C. Ferrari, Nano Lett. 16, 3005 (2016)

    Article  ADS  Google Scholar 

  26. M. Casalino, M. Iodice, L. Sirleto, I. Rendina, G. Coppola, Opt. Express. 21, 28072 (2013)

    Article  ADS  Google Scholar 

  27. Z. Wang, J.K. Clark, Y.-L. Ho, J.-J. Delaunay, Nanoscale 11, 17407 (2019)

    Article  Google Scholar 

  28. W. Shao, Q. Yang, C. Zhang, S. Wu, X. Li, Nanoscale 11, 1396 (2019)

    Article  Google Scholar 

  29. U.K. Chettiar, N. Engheta, Opt. Express. 23, 445 (2015)

    Article  ADS  Google Scholar 

  30. L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S.-T. Lee, Adv. Funct. Mater. 25, 2910 (2015)

    Article  Google Scholar 

  31. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  32. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett 105, 136805 (2010)

    Article  ADS  Google Scholar 

  33. Y. Yoon, K. Ganapathi, S. Salahuddin, Nano Lett. 11, 3768 (2011)

    Article  ADS  Google Scholar 

  34. W. Li, J.G. Valentine, Nanophotonics. 6, 177 (2017)

    Article  Google Scholar 

  35. Y. Zhang, W. Liu, Z. Li, H. Cheng, Y. Zhang, G. Jia, S. Chen, J. Tian, Appl. Phys. Lett. 111, 111109 (2017)

    Article  ADS  Google Scholar 

  36. X. Luo, X. Zhai, L. Wang, Q. Lin, Opt. Express. 26, 11658 (2018)

    Article  ADS  Google Scholar 

  37. V. Romanova, L. Matyushkin, V. Moshnikov, Glass. Phys. Chem. 44, 7 (2018)

    Article  Google Scholar 

  38. W.K. Hong, S. Cha, J.I. Sohn, J. Kim, J. Nanomater. 2015, 1 (2015)

    Google Scholar 

  39. M. Currie, M. Mastro, V. Wheeler, Opt. Mater. Express 7, 1697 (2017)

    Article  ADS  Google Scholar 

  40. N. Oliva, E.A. Casu, C. Yan, A. Krammer, T. Rosca, A. Magrez, I. Stolichnov, A. Schueler, O.J.F. Martin, A.M. Ionescu, Sci. Rep. 7, 14250 (2017)

    Article  ADS  Google Scholar 

  41. P. Yeh, Optical waves in layered media / Pochi Yeh (John Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  42. K. Wu, J. Chen, J.R. McBride, T. Lian, Science 349, 632 (2015)

    Article  ADS  Google Scholar 

  43. C. Ko, Z. Yang, S. Ramanathan, A.C.S. Appl, Mater. Interfaces. 3, 3396 (2011)

    Article  Google Scholar 

  44. W.J. Su, H.C. Chang, Y.T. Shih, Y.P. Wang, H.P. Hsu, Y.S. Huang, K.Y. Lee, J Alloy Compd. 671, 276 (2016)

    Article  Google Scholar 

  45. M. Abraham, S.E. Mohney, J. Appl. Phys. 122, 115306 (2017)

    Article  ADS  Google Scholar 

  46. C. Zhang, K. Wu, V. Giannini, X. Li, ACS Nano 11, 1719 (2017)

    Article  Google Scholar 

  47. Q. Sun, C. Zhang, W. Shao, X. Li, ACS Omega 4, 6020 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. William Johnston for proofreading of the article and useful feedback.

Funding

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hatef.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daliran, N., Hassanzadeh, A. & Hatef, A. Bimodal multilayer nanostructure based on vanadium dioxide phase transition: absorber and hot electron photodetector. Appl. Phys. A 128, 352 (2022). https://doi.org/10.1007/s00339-022-05488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05488-y

Keywords

Navigation