Skip to main content

Advertisement

Log in

A thorough examination of gadolinium (III)-containing silicate bioactive glasses: synthesis, physical, mechanical, elastic and radiation attenuation properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gadolinium (III)-containing (1, 3 and 5 wt.%) silicate-based bioactive glass powders were synthesized by sol–gel method and subsequently die pressed to fabricate disc-shape glass samples. Sintering was performed at 690 °C for 1 h in air atmosphere. Physical, structural, and mechanical properties (compressive strength and Vickers hardness) of the fabricated glass pellets were investigated. Results showed that prepared glass samples were amorphous after sintering and any detrimental effect of Gd2O3 was not observed on the densification. An increase in bulk density and in compressive strength was obtained as the gadolinium (III) concentration was increased. On the other hand, a significant influence of the rare-earth element on the Vickers hardness was not seen. For the sample containing gadolinium (III) at highest concentration, Vickers hardness was measured to be 3.25 ± 0.23 GPa. Our findings indicate that increasing the quantity of Gadolinium (III) significantly affects the gamma-ray attenuation qualities of bioactive glass samples. The addition of Gadolinium (III) improved the attenuation qualities of the bioactive glass samples across a broad energy range. As a result, it can be concluded that Gadolinium (III) and its monotonic effect may be used to modify the basic features of bioactive glass samples. In addition, it can be concluded that this monotonic effect may be employed to optimize the circumstances of use of associated bioactive materials based on their requirements in medical and engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Akhtar, Y. Javed, N.A. Shad, Chapter 6—noninvasive/minimally invasive nanodiagnostics, in Intelligent nanomaterials for drug delivery applications. ed. by N. Ahmad, P. Gopinath (Elsevier, Amsterdam, 2020), pp. 105–121. https://doi.org/10.1016/B978-0-12-817830-0.00006-0

    Chapter  Google Scholar 

  2. J.A. Park et al., Gd-DOTA conjugate of RGD as a potential tumor-targeting MRI contrast agent. ChemBioChem 9(17), 2811e3 (2008)

    Article  Google Scholar 

  3. M. Ahmad, W. Xu, S. Kim et al., Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci Rep 5, 8549 (2015). https://doi.org/10.1038/srep08549

    Article  Google Scholar 

  4. P. Caravan, J.J. Ellison, T.J. McMurry, R.B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics and applications. Chem. Rev. 99, 2293–2352 (1999)

    Article  Google Scholar 

  5. T. Kawano, H. Ishijima, T. Nakajima, J. Aoki, K. Endo, Gd-DTPA: a possible alternative contrast agent for use in CT during intraarterial administration. J. Comput. Assist. Tomogr. 23, 939–940 (1999)

    Article  Google Scholar 

  6. Y.H. So, W. Lee, E.-A. Park, P.K. Kim, Investigation of the characteristics of new, uniform, extremely small iron-based nanoparticles as T1 contrast agents for MRI. Korean J. Radiol. 22(10), 1708–1718 (2021). https://doi.org/10.3348/kjr.2020.145

    Article  Google Scholar 

  7. A. Fatima, W. Ahmad, A.K.A.A. Saidi, A. Choudhury, Y. Chang, G.H. Lee, Recent advances in gadolinium based contrast agents for bioimaging applications. Nanomaterials 11, 2449 (2021). https://doi.org/10.3390/nano11092449

    Article  Google Scholar 

  8. E. Tedeschi, F. Caranci, F. Giordano, V. Angelini, S. Cocozza, A. Brunetti, Gadolinium retention in the body: what we know and what we can do. Radio Med. 122, 589–600 (2017). https://doi.org/10.1007/s11547-017-0757-3

    Article  Google Scholar 

  9. Y. Al-Hadeethi, M.I. Sayyed, J. Kaewkhao, B.M. Raffah, R. Almalki, R. Rajaramakrishna, An extensive investigation of physical, optical and radiation shielding properties for borate glasses modified with gadolinium oxide. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-3053-3

    Article  Google Scholar 

  10. E. Kaewnuam, N. Wantana, S. Tanusilp, K. Kurosaki, P. Limkitjaroenporn, J. Kaewkhao, The influence of Gd2O3 on shielding, thermal and luminescence properties of WO3–Gd2O3–B2O3 glass for radiation shielding and detection material. Radiat. Phys. Chem. 190, 109805 (2022). https://doi.org/10.1016/j.radphyschem.2021.109805

    Article  Google Scholar 

  11. H. Luo, Hu. Xiaolin, W. Liu, Y. Zhang, Lu. Anxian, X. Hao, Compositional dependence of properties of Gd2O3–SiO2–B2O3 glasses with high Gd2O3 concentration. J. Non-Cryst. Solids 389, 86–92 (2014)

    Article  ADS  Google Scholar 

  12. L.L. Hench, The story of bioglass. J. Mater. Sci: Mater. Med. 17, 967–978 (2016)

    Google Scholar 

  13. J.R. Jones, Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9(1), 4457–4486 (2013). https://doi.org/10.1016/j.actbio.2012.08.023

    Article  Google Scholar 

  14. L.L. Hench, R. Jones Julian, Bioactive glasses: frontiers and challenges. Front. Bioeng. Biotechnol. 3, 194 (2015). https://doi.org/10.3389/fbioe.2015.00194

    Article  Google Scholar 

  15. D. Greenspan, Bioglass at 50—a look at Larry Hench’s legacy and bioactive materials. Biomed. Glass. 5, 178–184 (2019). https://doi.org/10.1515/bglass-2019-0014

    Article  Google Scholar 

  16. U. Pantulap, M. Arango-Ospina, A.R. Boccaccini, Bioactive glasses incorporating less-common ions to improve biological and physical properties. J Mater Sci: Mater Med 33, 3 (2022). https://doi.org/10.1007/s10856-021-06626-3

    Article  Google Scholar 

  17. A.M. Deliormanlı, B. Rahman, S. Oğuzlar, K. Ertekin, Structural and luminescent properties of Er3+ and Tb3+ doped sol-gel based bioactive glass powders and electrospun nanofibers. J. Mater. Sci. 56(2), 14487–14504 (2021)

    Article  ADS  Google Scholar 

  18. T. Mehrabi, A.S. Mesgar, Z. Mohammadi, B. Glasses, A promising therapeutic ion release strategy for enhancing wound healing. ACS Biomater. Sci. Eng. 6(10), 5399–5430 (2020). https://doi.org/10.1021/acsbiomaterials.0c00528

    Article  Google Scholar 

  19. A.M. Deliormanlı, S. Oğuzlar, M.Z. Ongun, Effects of Eu3+, Gd3+ and Yb3+ substitution on the structural, photoluminescence, and decay properties of silicate-based bioactive glass powders. J. Mater Res. (2022). https://doi.org/10.1557/s43578-021-00461-6

    Article  Google Scholar 

  20. D.Y. Zhu, B. Lu, J.H. Yin, Q.F. Ke, H. Xu, C.Q. Zhang, Y.P. Guo, Y.S. Gao, Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. Int. J. Nanomed. 14, 1085–1100 (2019). https://doi.org/10.2147/IJN.S193576

    Article  Google Scholar 

  21. R. Borges, J.F. Schneider, J. Marchi, Structural characterization of bioactive glasses containing rare earth elements (Gd and/or Yb). J. Mater Sci. 54, 11390–11399 (2019). https://doi.org/10.1007/s10853-019-03715-1

    Article  ADS  Google Scholar 

  22. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E.-S. Yousef, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.093

    Article  Google Scholar 

  23. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, A. Gamal, E.S. Yousef, Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.014

    Article  Google Scholar 

  24. N. Elkhoshkhany, E. Syala, E. Yousef, Concentration dependence of the elastic moduli, thermal properties, and non-isothermal kinetic parameters of Yb3+ doped multicomponent tellurite glass system. Results Phys. 16, 102876 (2020)

    Article  Google Scholar 

  25. G. Lakshminarayana, H.O. Ashok Kumar, S.A.M. Tekin, M.S. Issa, M.G.D. Al-Buriahi, D.-E. Lee, J. Yoon, T. Park, Illustration of distinct nuclear radiation transmission factors combined with physical and elastic characteristics of barium boro-bismuthate glasses. Results Phys. (2021). https://doi.org/10.1016/j.rinp.2021.105067

    Article  Google Scholar 

  26. G. ALMisned, W. Elshami, S.A.M. Issa, G. Susoy, H.M.H. Zakaly, M. Algethami, Y.S. Rammah, A. Ene, S.A. Al-Ghamdi, A.A. Ibraheem, H.O. Tekin, Enhancement of gamma-ray shielding properties in cobalt-doped heavy metal borate glasses: the role of lanthanum oxide reinforcement. Materials 14, 7703 (2021). https://doi.org/10.3390/ma14247703

    Article  ADS  Google Scholar 

  27. L.R.P. Kassab, G.R. da Silva Mattos, S.A.M. Issa, C.D.S. Ghaida Bilal, G.K. Bordon, H.M.H. Zakaly, H.O. Tekin, Optical and physical behaviours of newly developed germanium-tellurium (GeTe) glasses: a comprehensive experimental and in-silico study with commercial glasses and ordinary shields. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06780-y

    Article  Google Scholar 

  28. G. ALMisned, H.M.H. Zakaly, S.A.M. Issa, A. Ene, G. Kilic, O. Bawazeer, A. Almatar, D. Shamsi, E. Rabaa, Z. Sideig, H.O. Tekin, Gamma-ray protection properties of bismuth-silicate glasses against some diagnostic nuclear medicine radioisotopes: a comprehensive study. Materials 14, 6668 (2021). https://doi.org/10.3390/ma1421666810.3390/ma14216668

    Article  ADS  Google Scholar 

  29. G. Lakshminarayana, H.O. Ashok Kumar, S.A.M. Tekin, M.S. Issa, M.G.D. Al-Buriahi, D.-E. Lee, J. Yoon, T. Park, Probing of nuclear radiation attenuation and mechanical features for lithium bismuth borate glasses with improving Bi2O3 content for B2O3+Li2O amounts. Results Phys. (2021). https://doi.org/10.1016/j.rinp.2021.104246

    Article  Google Scholar 

  30. G. Kilic, E. Ilik, S.A.M. Issa, M.S. Bashar Issa, U.G. Al-Buriahi, H.M.H. Issever, H.O.T. Zakaly, Ytterbium (III) oxide reinforced novel TeO2-B2O3-V2O5 glass system: synthesis and optical, structural, physical and thermal properties. Ceram. Int. 47, 18517–18531 (2021). https://doi.org/10.1016/j.ceramint.2021.03.175

    Article  Google Scholar 

  31. E. Sakar, Ö.F. Özpolat, B. Alım, M. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  32. H. Aguiar, J. Serra, P. Gonzalez, B. Leon, Structural study of sol-gel silicate glasses by IR and Raman specroscopies. J. Non-Cryst. Solids 355, 475–480 (2009)

    Article  ADS  Google Scholar 

  33. J. Serra, P. Gonzalez, S. Liste, C. Serra, S. Chiussi, B. Leon, M. Perez-Amor, H.O. Ylanen, M. Hupa, J. Non-Cryst. Solids 332, 20–27 (2003)

    Article  ADS  Google Scholar 

  34. S. Han, W. Hou, C. Zhange, P. Sun, X. Huang, G. Wang, Structure and the point of zero charge of magnesium aluminium hydroxide. J. Chem. Soc. Faraday Trans. 94, 915 (1998). https://doi.org/10.1039/A706607D

    Article  Google Scholar 

  35. M.E. Wieser, T.B. Coplen, Atomic weights of the elements, (IUPAC technical report). Pure Appl. Chem. 83(2), 359–396 (2009). https://doi.org/10.1351/PAC-REP-10-09-14

    Article  Google Scholar 

  36. A.M. Deliormanli, S.A.M. Issa, M.S. Al-Buriahi, B. Rahman, H.M.H. Zakaly, H.O. Tekin, Erbium (III)- and terbium (III)-containing silicate-based bioactive glass powders: physical, structural and nuclear radiation shielding characteristics. Appl. Phys. A 127, 463 (2021). https://doi.org/10.1007/s00339-021-04615-5

    Article  ADS  Google Scholar 

  37. A.D. Abid, D.S. Anderson, G.K. Das, L.S. Van Winkle, I.M. Kennedy, Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation. Part Fibre Toxicol 10, 1 (2013). https://doi.org/10.1186/1743-8977-10-1

    Article  Google Scholar 

  38. M. Yamane, J.D. Mackenzie, Vicker’s hardness of glass. J. Non-Cryst. Solids 15, 153–164 (1974)

    Article  ADS  Google Scholar 

  39. H.O. Tekin, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses. Ceram. Int. 45, 9934–9949 (2019). https://doi.org/10.1016/j.ceramint.2019.02.036

    Article  Google Scholar 

  40. H.O. Tekin, O. Kilicoglu, E. Kavaz, E.E. Altunsoy, M. Almatari, O. Agar, M.I. Sayyed, The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX code. Results Phys. 12, 1797–1804 (2019). https://doi.org/10.1016/j.rinp.2019.02.017

    Article  ADS  Google Scholar 

  41. O. Kilicoglu, H.O. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram. Int. 46, 1323–1333 (2020). https://doi.org/10.1016/j.ceramint.2019.09.095

    Article  Google Scholar 

  42. O. Kilicoglu, H.O. Tekin, Bioactive glasses with TiO2 additive: Behavior characterization against nuclearradiation and determination of buildup factors. Ceram. Int. 46, 10779–10787 (2020). https://doi.org/10.1016/j.ceramint.2020.01.088

    Article  Google Scholar 

  43. A.M. Deliormanlı, M. Ensoylu, S.A.M. Issa, W. Elshami, A.M. Al-Baradi, M.S. Al-Buriahi, H.O. Tekin, WS2/bioactive glass composites: fabrication, structural, mechanical and radiation attenuation properties. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.07.146

    Article  Google Scholar 

  44. H.O. Tekin, M.S. Al-Buriahi, S.A.M. Issa, H.M.H. Zakaly, B. Issa, I. Kebaili, M.K.A. Ali Badawi, K.A. Karim, M.H.M.Z. Matori, Effect of Ag2O substituted in bioactive glasses: a synergistic relationship between antibacterial zone and radiation attenuation properties. J. Market. Res. 13, 2194–2201 (2021). https://doi.org/10.1016/j.jmrt.2021.06.025

    Article  Google Scholar 

  45. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics. J. Appl. Clin. Med. Phys. 12, 3557 (2011). https://doi.org/10.1120/jacmp.v12i4.3557

    Article  Google Scholar 

  46. H.H. Saleh, J.M. Sharaf, S.B. Alkhateeb, M.S. Hamideen, Studies on equivalent atomic number and photon buildup factors for some tissues and phantom materials. Radiat. Phys. Chem. 165, 108388 (2019). https://doi.org/10.1016/j.radphyschem.2019.108388

    Article  Google Scholar 

  47. E. Kavaz, N.Y. Yorgun, Gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloy. Compd. 752, 61–67 (2018). https://doi.org/10.1016/j.jallcom.2018.04.106

    Article  Google Scholar 

Download references

Acknowledgements

The study is partially supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK), grant no: 219M212 and the MCBU-BAP, Project No: 2020-067.

Funding

The authors express their sincere gratitude to Princess Nourah bint Abdulrahman University, Researchers Supporting Project Number (PNURSP2022R149), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Tekin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deliormanlı, A.M., Ensoylu, M., Issa, S.A.M. et al. A thorough examination of gadolinium (III)-containing silicate bioactive glasses: synthesis, physical, mechanical, elastic and radiation attenuation properties. Appl. Phys. A 128, 266 (2022). https://doi.org/10.1007/s00339-022-05408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05408-0

Keywords

Navigation