Skip to main content
Log in

Facile two step synthesis of chemiresistive sensor based on γFe2O3—activated carbon composites for room temperature alcohol vapour detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here in this research, Activated Carbon (AC)-γFe2O3 composite structures were prepared by pyrolysis of bamboo at 700–1000 °C temperatures. Characterization of the as-obtained samples by field-emission scanning electron microscopy, Raman spectroscopy, and X-ray diffraction analysis confirmed the formation of AC-γFe2O3 composite. The alcohol sensing performance of the composite structure at room temperature was investigated for different ethanol concentrations, which showed self-activated faster response/recovery, improved range of detection, and sensitivity. Ethanol sensing by the drop-casted AC-γFe2O3 films on a glass substrate was tested for various ethanol concentrations ranging from 50 to 500 ppm in water. The chemiresistive p-n-type heterojunctions formed between AC and γFe2O3 were attributed to the room temperature alcohol sensing performance of the material. AC-γFe2O3 prepared at 700 °C showed better sensitivity of 49% for 500 ppm ethanol concentration. The quickest response time was found to be 26 s for 100 ppm ethanol concentration with a recovery time of 15 s.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

GO:

Graphene oxide

rGO:

Reduced graphene oxide

FESEM:

Field-emission scanning electron microscopy

XRD:

X-ray diffraction

References

  1. A.W. Jones, Alcohol, its analysis in blood and breath for forensic purposes, impairment effects, and acute toxicity. Wiley Interdiscip. Rev.: Forens. Sci. 1(6), 1353 (2019). https://doi.org/10.1002/wfs2.1353

    Article  Google Scholar 

  2. A. Umar, A.A. Ibrahim, R. Kumar, H. Albargi, M.A. Alsaiari, F. Ahmed, Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application. Sens. Actuators, B Chem. 326, 128851 (2021). https://doi.org/10.1016/j.snb.2020.128851

    Article  Google Scholar 

  3. V. Kumar, P.K. Tyagi, Potential application of multi-walled carbon nanotubes/activated carbon/bamboo charcoal for efficient alcohol sensing. J. Alloy. Compd. 767, 215–222 (2018). https://doi.org/10.1016/j.jallcom.2018.06.123

    Article  Google Scholar 

  4. R. Boroujerdi, A. Abdelkader, R. Paul, State of the art in alcohol sensing with 2D materials. Nano-Micro Lett. 12(1), 1–33 (2020). https://doi.org/10.1007/s40820-019-0363-0

    Article  Google Scholar 

  5. Q.A. Khan, A. Shaur, T.A. Khan, Y.F. Joya, M.S. Awan, Characterization of reduced graphene oxide produced through a modified Hoffman method. Cogent Chem. 3(1), 1298980 (2017). https://doi.org/10.1080/23312009.2017.1298980

    Article  Google Scholar 

  6. O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6), 711–723 (2010). https://doi.org/10.1002/smll.200901934

    Article  Google Scholar 

  7. B. Li, X. Weng, X. Sun, Y. Zhang, X. Lv, G. Gu, Facile synthesis of Fe3O4/reduced graphene oxide/polyvinyl pyrrolidone ternary composites and their enhanced microwave absorbing properties. J. Saudi Chem. Soc. 22(8), 979–984 (2018). https://doi.org/10.1016/j.jscs.2018.02.006

    Article  Google Scholar 

  8. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008

    Article  Google Scholar 

  9. A. Ahmadivand, Tunneling plasmonics: vacuum rabi oscillations in carbon nanotube mediated electromigrated nanojunctions. J. Phys. Chem. C 125(1), 782–791 (2020). https://doi.org/10.1021/acs.jpcc.0c09325

    Article  Google Scholar 

  10. Y. Luo, E.D. Ahmadi, K. Shayan, Y. Ma, K.S. Mistry, C. Zhang, J. Hone, J.L. Blackburn, S. Strauf, Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-01777-w

    Article  Google Scholar 

  11. I.Y. Bu, J. Zheng, A new type of counter electrode for dye sensitized solar cells based on solution processed SnO2 and activated carbon. Mater. Sci. Semicond. Process. 39, 223–228 (2015). https://doi.org/10.1016/j.mssp.2015.04.029

    Article  Google Scholar 

  12. S. Zhang, M. Zheng, Z. Lin, N. Li, Y. Liu, B. Zhao, H. Pang, J. Cao, P. He, Y. Shi, Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. J. Mater. Chem. A 2(38), 15889–15896 (2014). https://doi.org/10.1039/C4TA03503H

    Article  Google Scholar 

  13. M.S. Reza, C.S. Yun, S. Afroze, N. Radenahmad, M.S.A. Bakar, R. Saidur, J. Taweekun, A.K. Azad, Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J. Basic Appl. Sci. 27(1), 208–238 (2020). https://doi.org/10.1080/25765299.2020.1766799

    Article  Google Scholar 

  14. G. Nandamuri, S. Roumimov, R. Solanki, Chemical vapor deposition of graphene films. Nanotechnology 21(14), 145604 (2010). https://doi.org/10.1088/0957-4484/21/14/145604

    Article  ADS  Google Scholar 

  15. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15(9), 974–978 (2005). https://doi.org/10.1039/B413029D

    Article  Google Scholar 

  16. U. Kamran, Y.J. Heo, J.W. Lee, S.J. Park, Functionalized carbon materials for electronic devices: a review. Micromachines (Basel) 10(4), 871 (2019). https://doi.org/10.3390/mi10040234

    Article  Google Scholar 

  17. G. Speranza, The role of functionalization in the applications of carbon materials: an overview. C–J. Carbon Res. 5(4), 84 (2019). https://doi.org/10.3390/c5040084

    Article  Google Scholar 

  18. H.A. Hamouda, S. Cui, X. Dai, L. Xiao, X. Xie, H. Peng, G. Ma, Synthesis of porous carbon material based on biomass derived from hibiscus sabdariffa fruits as active electrodes for high-performance symmetric supercapacitors. RSC Adv. 11(1), 354–363 (2021). https://doi.org/10.1039/D0RA09509E

    Article  ADS  Google Scholar 

  19. S. Nasir, M.Z. Hussein, Z. Zainal, N.A. Yusof, Carbon-based nanomaterials/allotropes: a glimpse of their synthesis, properties and some applications. Materials 11(2), 295 (2018). https://doi.org/10.3390/ma11020295

    Article  ADS  Google Scholar 

  20. A. Ibrahim, M.H. Abdel-Aziz, M.S. Zoromba, A.F. Al-Hossainy, Structural, optical, and electrical properties of multi-walled carbon nanotubes/polyaniline/Fe3O4 ternary nanocomposites thin film. Synth. Met. 238, 1–13 (2018). https://doi.org/10.1016/j.synthmet.2018.02.006

    Article  Google Scholar 

  21. A.F. Al-Hossainy, A.A.I. Abd-Elmageed, A.T.A. Ibrahim, Synthesis, structural and optical properties of gold nanoparticle-graphene-selenocysteine composite bismuth ultrathin film electrode and its application to Pb (II) and Cd (II) determination. Arab. J. Chem. 12(8), 2853–2863 (2019). https://doi.org/10.1016/j.arabjc.2015.06.020

    Article  Google Scholar 

  22. H.Y. Alolaywi, S. Duanghathaipornsuk, S.S. Kim, C.H. Li, J. Jinschek, D.S. Kim, A.C. Alba-Rubio, Electrochemical MoOx/Carbon nanocomposite-based gas sensor for formaldehyde detection at room temperature. J. Electrochem. Soc. 168, 067525 (2021). https://doi.org/10.1149/1945-7111/ac0d3c

    Article  ADS  Google Scholar 

  23. Y.H. Ngo, M. Brothers, J.A. Martin, C.C. Grigsby, K. Fullerton, R.R. Naik, S.S. Kim, Chemically enhanced polymer-coated carbon nanotube electronic gas sensor for isopropyl alcohol detection. ACS Omega 3(6), 6230–6236 (2018). https://doi.org/10.1021/acsomega.8b01039

    Article  Google Scholar 

  24. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). https://doi.org/10.1126/science.287.5453.622

    Article  ADS  Google Scholar 

  25. E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717), 1942–1945 (2005). https://doi.org/10.1126/science.1109128

    Article  ADS  Google Scholar 

  26. D. Eder, Carbon nanotube− inorganic hybrids. Chem. Rev. 110(3), 1348–1385 (2010). https://doi.org/10.1021/cr800433k

    Article  Google Scholar 

  27. K. Movlaee, M.R. Ganjali, P. Norouzi, G. Neri, Iron-based nanomaterials/graphene composites for advanced electrochemical sensors. Nanomaterials 7(12), 406 (2017). https://doi.org/10.3390/nano7120406

    Article  Google Scholar 

  28. S.G. Leonardi, A. Mirzaei, A. Bonavita, S. Santangelo, P. Frontera, F. Pantò, P.L. Antonucci, G. Neri, A comparison of the ethanol sensing properties of α-iron oxide nanostructures prepared via the sol–gel and electrospinning techniques. Nanotechnology 27(7), 075502 (2016). https://doi.org/10.1088/0957-4484/27/7/075502

    Article  ADS  Google Scholar 

  29. P. Muthukumaran, C. Sumathi, J. Wilson, C. Sekar, S.G. Leonardi, G. Neri, Fe2O3/Carbon nanotube-based resistive sensors for the selective ammonia gas sensing. Sens. Lett. 12(1), 17–23 (2014). https://doi.org/10.1166/sl.2014.3220

    Article  Google Scholar 

  30. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, M.S. Aleksanyan, K. Hernadi, Z. Nemeth, P. Berki, Z. Papa, Z. Toth, L. Forro, The ethanol sensors made from α-Fe2O3 decorated with multiwall carbon nanotubes. Adv. Nano Res. 3(1), 1–11 (2015). https://doi.org/10.12989/anr.2015.3.1.001

    Article  Google Scholar 

  31. P. Barathi, A. Devaraj, A. Subramania, Mesoporous carbon/α-Fe2O3 nanoleaf composites for disposable nitrite sensors and energy storage applications. ACS Omega 5(50), 32160–32170 (2020). https://doi.org/10.1021/acsomega.0c02594

    Article  Google Scholar 

  32. N. Díez, A. Śliwak, S. Gryglewicz, B. Grzyb, G. Gryglewicz, Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment. RSC Adv. 5(100), 81831–81837 (2015). https://doi.org/10.1039/C5RA14461B

    Article  ADS  Google Scholar 

  33. X. Jiao, Y. Qiu, L. Zhang, X. Zhang, Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv. 7(82), 52337–52344 (2017). https://doi.org/10.1039/C7RA10809E

    Article  ADS  Google Scholar 

  34. Q. Du, M. Zheng, L. Zhang, Y. Wang, J. Chen, L. Xue, W. Dai, G. Ji, J. Cao, Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim. Acta 55(12), 3897–3903 (2010). https://doi.org/10.1016/j.electacta.2010.01.089

    Article  Google Scholar 

  35. C. Liang, H. Liu, J. Zhou, X. Peng, H. Zhang, One-step synthesis of spherical γ-Fe2O3 nanopowders and the evaluation of their photocatalytic activity for orange I degradation. J. Chem. 2015, 791829 (2015). https://doi.org/10.1155/2015/791829

    Article  Google Scholar 

  36. J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodriguez, C. Belver, Review on activated carbons by chemical activation with FeCl3. C–J. Carbon Res. 6(2), 21 (2020). https://doi.org/10.3390/c6020021

    Article  Google Scholar 

  37. G. Pavoski, T. Maraschin, F.D.C. Fim, N.M. Balzaretti, G.B. Galland, C.S. Moura, N.R.D.S. Basso, Few layer reduced graphene oxide: evaluation of the best experimental conditions for easy production. Mater. Res. 20, 53–61 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0528

    Article  Google Scholar 

  38. L. Shahriary, A.A. Athawale, Graphene oxide synthesized by using modified hummers approach. Int. J. Renew. Energy Environ. Eng 2(01), 58–63 (2014)

    Google Scholar 

  39. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  ADS  Google Scholar 

  40. R. Schönfelder, M.H. Rümmeli, W. Gruner, M. Löffler, J. Acker, V. Hoffmann, T. Gemming, B. Büchner, T. Pichler, Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes. Nanotechnology 18(37), 375601 (2007). https://doi.org/10.1088/0957-4484/18/37/375601

    Article  Google Scholar 

  41. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  ADS  Google Scholar 

  42. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53(3), 1126–1130 (1970). https://doi.org/10.1063/1.1674108

    Article  ADS  Google Scholar 

  43. F.T. Johra, J.W. Lee, W.G. Jung, Facile and safe graphene preparation on solution-based platform. J. Ind. Eng. Chem. 20(5), 2883–2887 (2014). https://doi.org/10.1016/j.jiec.2013.11.022

    Article  Google Scholar 

  44. E. Dervishi, Z. Ji, H. Htoon, M. Sykora, S.K. Doorn, Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence. Nanoscale 11(35), 16571–16581 (2019). https://doi.org/10.1039/C9NR05345J

    Article  Google Scholar 

  45. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(1), 1–6 (2010). https://doi.org/10.1038/ncomms1067

    Article  Google Scholar 

  46. R. Kumar, R. Ghosh, Selective determination of ammonia, ethanol and acetone by reduced graphene oxide-based gas sensors at room temperature. Sens. Bio-Sens. Res. 28, 100336 (2020). https://doi.org/10.1016/j.sbsr.2020.100336

    Article  Google Scholar 

  47. B. Paulchamy, G. Arthi, B.D. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial. J. Nanomed. Nanotechnol. 6(1), 1 (2015). https://doi.org/10.4172/2157-7439.1000253

    Article  Google Scholar 

  48. J. Gao, C. Meng, D. Xie, C. Liu, H. Bao, B. Yang, M. Li, Y. Yue, Temperature dependent thermal transport in graphene paper above room temperature. Appl. Therm. Eng. 150, 1252–1259 (2019). https://doi.org/10.1016/j.applthermaleng.2019.01.098

    Article  Google Scholar 

  49. A. Umar, A.A. Ibrahim, U.T. Nakate, H. Albargi, M.A. Alsaiari, F. Ahmed, F.A. Alharthi, A.A. Alghamdi, N. Al-Zaqri, Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application. Chem. Phys. Lett. 763, 138204 (2021). https://doi.org/10.1016/j.cplett.2020.138204

    Article  Google Scholar 

  50. A. Husain, S. Ahmad, F. Mohammad, Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite. Mater. Chem. Phys. 239, 122324 (2020). https://doi.org/10.1016/j.matchemphys.2019.122324

    Article  Google Scholar 

  51. B.Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, N.J. Halas, Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6(1), 1–7 (2015). https://doi.org/10.1038/ncomms8797

    Article  Google Scholar 

  52. M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, S. Yazdi, P. Nordlander, N.J. Halas, Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photonics 5(9), 3472–3477 (2018). https://doi.org/10.1021/acsphotonics.8b00623

    Article  Google Scholar 

  53. K.-E. Byun, H.-J. Chung, J. Lee, H. Yang, H.J. Song, J. Heo, D.H. Seo, S. Park, S.W. Hwang, I. Yoo, K. Kim, Graphene for true ohmic contact at metal-semiconductor junctions. Nano Lett. 13, 4001–4005 (2013). https://doi.org/10.1021/nl402367y

    Article  ADS  Google Scholar 

  54. T. Tharsika, M. Thanihaichelvan, A.S.M.A. Haseeb, S.A. Akbar, Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis. Frontiers in Materials 6, 122 (2019). https://doi.org/10.3389/fmats.2019.00122

    Article  ADS  Google Scholar 

  55. W. Zheng, Z. Li, H. Zhang, W. Wang, Y. Wang, C. Wang, Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater. Res. Bull. 44(6), 1432–1436 (2009). https://doi.org/10.1016/j.materresbull.2008.12.013

    Article  Google Scholar 

  56. Sin, M.L., Chow, G.C., Fung, C.K., Li, W.J., Leong, P., Wong, K.W. and Lee, T., Ultra-low-power alcohol vapor sensors based on multi-walled carbon nanotube. 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems 2006; 1198–1202. DOI: https://doi.org/10.1109/NEMS.2006.334679

  57. T. Kavinkumar, D. Sastikumar, S. Manivannan, Effect of functional groups on dielectric, optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature. RSC Adv. 5(14), 10816–10825 (2015). https://doi.org/10.1039/C4RA12766H

    Article  ADS  Google Scholar 

  58. C. Zhang, Z.L. Hou, B.X. Zhang, H.M. Fang, S. Bi, High sensitivity self-recovery ethanol sensor based on polyporous graphene oxide/melamine composites. Carbon 137, 467–474 (2018). https://doi.org/10.1016/j.carbon.2018.05.055

    Article  Google Scholar 

  59. S.J. Young, Z.D. Lin, C.H. Hsiao, C.S. Huang, Ethanol gas sensors composed of carbon nanotubes with adsorbed gold nanoparticles. Int. J. Electrochem. Sci 7(11), 11634–11640 (2012). https://doi.org/10.1149/2.0211710jss

    Article  Google Scholar 

  60. Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M. Grundmann, X. Liu, Y. Fu, Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6(3), 470–506 (2019). https://doi.org/10.1039/C8MH01365A

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the experimental facilities used at IISC, Bangalore and Dr. RN for his valuable help and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Kumar Deheri.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial or non-financial interests for this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, L., Sarangi, S.N., Soren, D. et al. Facile two step synthesis of chemiresistive sensor based on γFe2O3—activated carbon composites for room temperature alcohol vapour detection. Appl. Phys. A 128, 153 (2022). https://doi.org/10.1007/s00339-022-05311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05311-8

Keywords

Navigation