Skip to main content
Log in

Gas sensing performance of Fe2O3-Co3O4 nano heterojunctions for ethanol detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the development of a conductometric ethanol sensor based on Fe2O3/Co3O4 nano-heterostructures, synthesized by sol–gel auto combustion reaction method, is reported. The as-synthesized composite nanoparticles with different Fe2O3/Co3O4 molar ratio were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectra (EDX), and diffuse reflectance spectroscopy (DRS). The electrical and ethanol sensing properties of the Fe2O3/Co3O4 nano-heterostructures were investigated. The results reveal that, when operated at the optimal working temperature of 250 ℃, the Fe2O3/Co3O4 (0.6:1 molar ratio) based sensor displays significantly improved ethanol sensing ability compared to pristine Co3O4. Good sensitivity, short response/recovery time, repeatability, and selectivity are the distinctive characteristics of the sensor developed. The improved ethanol sensing performances are attributed to the presence of p-n heterojunction in the Fe2O3/Co3O4 nano-heterostructures synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  1. G. Neri, First fifty years of chemoresistive gas sensors. Chemosensors 3, 1 (2015). https://doi.org/10.3390/chemosensors3010001

    Article  CAS  Google Scholar 

  2. Y. Zeng, S. Lin, Gu. Ding, X. Li, Two-dimensional nanomaterials for gas sensing applications: the role of theoretical calculations. Nanomaterials 8(10), 851 (2018). https://doi.org/10.3390/nano8100851

    Article  CAS  Google Scholar 

  3. N. Van Hoang, L.M. Duc, N.T. Hiep, N.M. Hung, C.V. Nguyen, P.T. Hung, P.D. Hoat, V.K. Vo, Y.-W. Heo, Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO–SnO2 internal heterojunctions for ppb H2S and NO2 gases detection. Sens. Actuators B: Chem. 334, 129606 (2021). https://doi.org/10.1016/j.snb.2021.129606

    Article  CAS  Google Scholar 

  4. G. Wang, S. Yang, Li. Cao, P. Jin, X. Zeng, X. Zhang, J. Wei, Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coord. Chem. Rev. 445, 214086 (2021). https://doi.org/10.1016/j.ccr.2021.214086

    Article  CAS  Google Scholar 

  5. Wu. Xiaonan, Yu. Shunshun Xiong, Y.G. Gong, Wu. Weiwei, Z. Mao, Q. Liu, Hu. Sheng, X. Long, MOF-SMO hybrids as a H2S sensor with superior sensitivity and selectivity. Sens. Actuators B Chem. 292, 32–39 (2019). https://doi.org/10.1016/j.snb.2019.04.076

    Article  CAS  Google Scholar 

  6. M.-Y. Lin, C.-E. Chang, C.-H. Wang, Su. Chen-Fung, C. Chen, S.-C. Lee, S.-Y. Lin, Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS2/graphene hetero-structures by chemical vapor depositions. Appl. Phys. Lett. 105(7), 073501 (2014). https://doi.org/10.1063/1.4893448

    Article  CAS  Google Scholar 

  7. V.S. Bhati, M. Kumar, R. Banerjee, Gas sensing performance of 2D nanomaterials/metal oxide nanocomposites: a review. J. Mater. Chem. C 9, 8776–8808 (2021). https://doi.org/10.1039/D1TC01857D

    Article  CAS  Google Scholar 

  8. F. Liao, B.T. Lo, E. Tsang, The applications of nano-hetero-junction in optical and thermal catalysis. Eur. J. Inorg. Chem. 13, 1924–1938 (2016). https://doi.org/10.1002/ejic.201501213

    Article  CAS  Google Scholar 

  9. M.H. Balali, N. Nouri, E. Omrani, A. Nasiri, W. Otieno, An overview of the environmental, economic, and material developments of the solar and wind sources coupled with the energy storage systems. Int. J. Energy Res. 41, 1948–1962 (2017). https://doi.org/10.1002/er.3755

    Article  Google Scholar 

  10. B. Nam, T.-K. Ko, S.-K. Lee, NO2 sensing properties of WO3-decorated In2O3 nanorods and In2O3-decorated WO3 nanorods. Nano Converg. 6, 1–10 (2019). https://doi.org/10.1186/s40580-019-0205-2

    Article  CAS  Google Scholar 

  11. T. Liu, J. Liu, Qi. Liu, Y. Sun, X. Jing, H. Zhang, J. Wang, Three-dimensional hierarchical Co3O4 nano/micro-architecture: synthesis and ethanol sensing properties. Cryst. Eng. Commun. 18, 5728–5735 (2016). https://doi.org/10.1039/C6CE00947F

    Article  CAS  Google Scholar 

  12. F.-R. Juang, W.-Y. Wang, Ethanol gas sensors with nanocomposite of nickel oxide and Tungsten oxide. IEEE Sensors J. 21, 19740–19752 (2021). https://doi.org/10.1109/JSEN.2021.3099859

    Article  CAS  Google Scholar 

  13. A. Mirzaei, S. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42, 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  14. A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol–gel method. Ceram. Int. 42, 6136–6144 (2016). https://doi.org/10.1016/j.ceramint.2015.12.176

    Article  CAS  Google Scholar 

  15. A. Mirzaei, S. Park, G.-J. Sun, H. Kheel, C. Lee, S. Lee, Fe2O3/Co3O4 composite nanoparticle ethanol sensor. J. Korean Phys. Soc. 69, 373–380 (2016). https://doi.org/10.1016/j.snb.2019.126845

    Article  CAS  Google Scholar 

  16. M. Al-Hashem, S. Akbar, P. Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens. Actuators B Chem. 301, 126845 (2019). https://doi.org/10.3938/jkps.69.373

    Article  CAS  Google Scholar 

  17. G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R 61, 1–39 (2008). https://doi.org/10.1016/j.mser.2008.02.001

    Article  CAS  Google Scholar 

  18. N. Al-Hardan, M. Abdullah, A.A. Aziz, Performance of Cr-doped ZnO for acetone sensing. Appl. Surf. Sci. 270, 480–485 (2013)

    Article  CAS  Google Scholar 

  19. P. Rai, Y.-S. Kim, H.-M. Song, Min Kyung Song, Yeon-Tae Yu, “The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases.” Sens. Actuators, B Chem. 165, 133–142 (2012). https://doi.org/10.1016/j.snb.2012.02.030

    Article  CAS  Google Scholar 

  20. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B: Chem. 190, 472–478 (2014). https://doi.org/10.1016/j.snb.2013.08.067

    Article  CAS  Google Scholar 

  21. D. Jua, H. Xua, Z. Qiua, J. Guoa, J. Zhanga, B. Cao, Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction. Sens. Actuators B: Chem. 200, 288–296 (2014). https://doi.org/10.1016/j.snb.2014.04.029

    Article  CAS  Google Scholar 

  22. Z. Hua, Y. Li, Y. Zeng, Yi. Wi, A theoretical investigation of the power-law response of metal oxide semiconductor gas sensors Ι: Schottky barrier control. Sens. Actuators, B Chem. 255, 1911–1919 (2018). https://doi.org/10.1016/j.snb.2017.08.206

    Article  CAS  Google Scholar 

  23. B. Bhowmik, K. Dutta, P. Bhattacharyya, An Efficient Room Temperature Ethanol Sensor Device Based on p-n Homojunction of TiO2 Nanostructures. IEEE Trans. Electron Dev. 66(2), 1063–1068 (2019). https://doi.org/10.1109/TED.2018.2885360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. K. thank the Department of Engineering, University of Messina (ITALY) for providing gas sensing facilities. The authors acknowledge the Department of Physics Air University Islamabad, NINVAST and HEC Pakistan.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MK; SC: Conceptualization, investigation, writing—original draft preparation. MK; SC: ZS: Investigation. MH; GN: Supervision. GN: Writing—review and editing.

Corresponding authors

Correspondence to M. Hussain or G. Neri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Consent to participate

All authors agreed with the content and gave explicit consent to submit this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Crispi, S., Hussain, M. et al. Gas sensing performance of Fe2O3-Co3O4 nano heterojunctions for ethanol detection. J Mater Sci: Mater Electron 34, 1982 (2023). https://doi.org/10.1007/s10854-023-11340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11340-7

Navigation