Skip to main content
Log in

Optical and electrical properties of Al1-xInxN films with a wide middle-composition range by RF sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Al1-xInxN films with a wide middle-composition range were deposited on Si/glass substrate by radio-frequency magnetron sputtering. The microstructures of as-grown Al1-xInxN films were characterised by AFM, SEM, and EDS. The optical bandgap of Al1-xInxN films can be tuned from 1.85 to 2.93 eV by decreasing the In content from 0.7 to 0.3, covering the whole visible region. Raman spectroscopy demonstrates A1 and E2 (high) phonon modes in the Al1-xInxN films. The photoluminescence spectra of Al1-xInxN films reveals the emission band originates from the band edge-related radiation. The optical bowing parameter of Al1-xInxN films is confirmed to be 2.28 eV. The conductivity of the films increases with increasing In content. The I-V curves show the Al1-xInxN films form quasi-Ohmic contact with W electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.T. Hardy, D.F. Feezell, S.P. DenBaars, S. Nakamura, Mater. Today 14, 408 (2011)

    Article  Google Scholar 

  2. S. Nakamura, Rev. Mod. Phys 87, 1139 (2015)

    Article  ADS  Google Scholar 

  3. Y. Kim, M.S. Kim, H.J. Yun, S.Y. Ryu, B.J. Choi, Ceram. Int. 44, 17447 (2018)

    Article  Google Scholar 

  4. M.G. Kibria, H.P.T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M.L. Trudeau, S. Paradis, A.R. Hakima, Z. Mi, ACS Nano 7, 7886 (2013)

    Article  Google Scholar 

  5. R. Kour, S. Arya, S. Verma, A. Singh, P. Mahajan, A. Khosla, ECS J. Solid State Sci. Technol. 9, 015011 (2020)

    Article  ADS  Google Scholar 

  6. S. Khan, S. Arya, P. Lehana, J. Nano- Electron. Phys. 5, 02010 (2013)

    Google Scholar 

  7. C. Besleaga, A.C. Galca, C.F. Miclea, I. Mercioniu, M. Enculescu, G.E. Stan, A.O. Mateescu, V. Dumitru, S. Costea, J. Appl. Phys. 116, 153509 (2014)

    Article  ADS  Google Scholar 

  8. S.F. Chichibu, K. Kojima, A. Uedono, Y. Sato, Adv. Mater 29, 1603644 (2017)

    Article  Google Scholar 

  9. M. Alizadeh, G.B. Tong, M.S. Mehmood, K.W. Qader, S.A. Rahman, B. Shokri, Sol. Energy Mater. Sol. Cells 185, 445 (2018)

    Article  Google Scholar 

  10. C. Hums, J. Bläsing, A. Dadgar, A. Diez, T. Hempel, J. Christen, A. Krost, K. Lorenz, E. Alves, Appl. Phys. Lett. 90, 022105 (2007)

    Article  ADS  Google Scholar 

  11. H.K. Chauveau, P. Mierry, J.M. Chauveau, J.Y. Duboz, J. Cryst. Growth 316, 30 (2011)

    Article  ADS  Google Scholar 

  12. M. Miyoshi, M. Yamanaka, T. Egawa, T. Takeuchi, J. Cryst. Growth 506, 40 (2019)

    Article  ADS  Google Scholar 

  13. N. Hatui, M. Frentrup, A.A. Rahman, A. Kadir, S. Subramanian, M. Kneissl, A. Bhattacharya, J. Cryst. Growth 411, 106 (2015)

    Article  ADS  Google Scholar 

  14. W.C. Chen, Y.H. Wu, C.Y. Peng, C.N. Hsiao, L. Chang, Nanoscale Res. Lett. 9, 204 (2014)

    Article  ADS  Google Scholar 

  15. M. Alizadeh, V. Ganesh, H. Mehdipour, N.F.F. Nazarudin, B.T. Goh, A. Shuhaimi, S.A. Rahman, J. Alloys Compd 632, 741 (2015)

    Article  Google Scholar 

  16. M. Alizadeh, V. Ganesh, A. Pandikumar, B.T. Goh, S. Azianty, N.M. Huang, S.A. Rahman, J. Alloys Compd 670, 229 (2016)

    Article  Google Scholar 

  17. A. Núñez-Cascajero, S. Valdueza-Felip, R. Blasco, M. de la Mata, S.I. Molina, M. González-Herráez, E. Monroy, F.B. Naranjo, J. Alloys Compd 769, 824 (2018)

    Article  Google Scholar 

  18. N. Afzal, M. Devarajan, K. Ibrahim, Mater. Sci. Semicond. Process 51, 8 (2016)

    Article  Google Scholar 

  19. C.J. Dong, M. Xu, Q.Y. Chen, F.S. Liu, H.P. Zhou, Y. Wei, H.X. Ji, J. Alloys Compd 479, 812 (2009)

    Article  Google Scholar 

  20. T.S. Yeh, J.M. Wu, W.H. Lan, Thin Solid Films 517, 3204 (2009)

    Article  ADS  Google Scholar 

  21. Q.X. Guo, Y. Okazaki, Y. Kume, T. Tanaka, M. Nishio, H. Ogawa, J. Cryst. Growth 300, 151 (2007)

    Article  ADS  Google Scholar 

  22. A. Núñez-Cascajero, S. Valdueza-Felip, L. Monteagudo-Lerma, E. Monroy, E. Taylor-Shaw, R.W. Martin, M. González-Herráez, F.B. Naranjo, J. Phys. D Appl. Phys. 50, 065101 (2017)

    Article  ADS  Google Scholar 

  23. A. Núñez-Cascajero, L. Monteagudo-Lerma, S. Valdueza-Felip, C. Navío, E. Monroy, M. González-Herráez, F.B. Naranjo, Jpn. J. Appl. Phys 55, 05–07 (2016)

    Article  Google Scholar 

  24. H. He, Y. Cao, R. Fu, W. Guo, Z. Huang, M. Wang, C. Huang, J. Huang, H. Wang, Appl. Surf. Sci 256, 1812 (2010)

    Article  ADS  Google Scholar 

  25. L. Wei, S. Longhai, L. Jun, C. Jianjin, W. Lijun, Q. Dongli, Z. Gang, L. Xuefei, Appl. Surf. Sci 504, 144335 (2020)

    Article  Google Scholar 

  26. F. Wu, X. Tong, Z. Zhao, J. Gao, Y. Zhou, P. Kelly, J. Alloys Compd 695, 765 (2017)

    Article  Google Scholar 

  27. K. Ou, S. Wang, M. Huang, Y. Zhang, Y. Wang, X. Duan, L. Yi, J. Lumin 199, 34 (2018)

    Article  Google Scholar 

  28. A.S. Hassanien, A.A. Akl, Superlatt. Microstruct. 89, 153 (2016)

    Article  ADS  Google Scholar 

  29. T. Kawamura, Y. Fujita, Y. Hamaji, T. Akiyama, Y. Kangawa, I. Gorczyca, T. Suski, M. Wierzbowska, S. Krukowski, Phys. Status. Solidi. B 257, 1900530 (2019)

    Article  ADS  Google Scholar 

  30. T. Kang, A. Hashimoto, A. Yamamoto, Phys. Rev. B 79, 033301 (2009)

    Article  ADS  Google Scholar 

  31. R. Butté, J.F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H.J. Buehlmann, S. Christopoulos, G. Baldassarri Höger von Högersthal, A.J.D. Grundy, M. Mosca, C. Pinquier, M.A.P.F. Demangeot, J. Frandon, P.G. Lagoudakis, J.J. Baumberg, N. Grandjean, J. Phys. D: Appl. Phys. 40, 6328 (2007)

    Article  ADS  Google Scholar 

  32. A.V. Voznyy, V.G. Deibuk, Semiconductors 38, 304 (2004)

    Article  ADS  Google Scholar 

  33. T.S. Yeh, J.M. Wu, W.H. Lan, J. Cryst. Growth 310, 5308 (2008)

    Article  ADS  Google Scholar 

  34. S. Verma, S. Arya, V. Gupta, A. Khosla, Chem. Eng. J 424, 130567 (2021)

    Article  Google Scholar 

  35. A. Sv, A. Sa, B. Vg, C. Sm, D. Hf, D. Ak, J. Mater. Res .Technol. 11, 564 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation Guidance Plan Project of Liaoning province (2019-ZD-0254), Opening Foundation of Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (2017004) and Basic Research Program of Educational Commission of Liaoning province (Grant No. LG 201910 and LG 201716). Open Project of State Key Laboratory of Superhard Materials, Jilin University (202004)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DongLi Qi or LongHai Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Qi, D., Li, X. et al. Optical and electrical properties of Al1-xInxN films with a wide middle-composition range by RF sputtering. Appl. Phys. A 128, 142 (2022). https://doi.org/10.1007/s00339-022-05289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05289-3

Keywords

Navigation