Skip to main content

Advertisement

Log in

Modeling source–drain voltage-dependent energy needed for emission or absorption of a photon in GaN devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on the three-dimensional Schrödinger equation and hot-carrier effects, a physical model to clarify how the source–drain voltage affects the energy needed for the emission or absorption of a photon in GaN heterojunctions is proposed. The proposed model predicts that the energy needed for the emission or absorption of a photon in GaN heterojunctions will be linearly reduced by the square of the source–drain voltage and the device temperature. Thus, they will shift the emission or absorption spectrum of emission or absorption. The results of voltage and temperature-dependent spectrum noted in the Raman and photoluminescence experiments support the predicted results by the proposed model. Additionally, temperature-dependent spectral broadening observed in experiments can be described by the proposed model. It suggests that quantum coupling should be considered in GaN devices because of the hot-carrier effects, which denote that the energy of channel electrons can be very high. It is also essential for accurately measuring temperature by Raman measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source–drain voltage-dependent Raman peak position of GaN HEMTs in on-state. Experimental data come from reference [2]

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.K. Kaneriya, G. Rastogi, P.K. Basu, R.B. Upadhyay, A.N. Bhattacharya, Microelectron. Eng. 233, 111433 (2020).

  2. K.R. Bagnall, E.A. Moore, S.C. Badescu, L. Zhang, E.N. Wang, Rev. Sci. Instrum. 88, 113111 (2017).

  3. J. Kim, J.A. Freitas, J. Mittereder, R. Fitch, B.S. Kang, S.J. Pearton, F. Ren, Solid-State Electron. 50, 408 (2006)

    Article  ADS  Google Scholar 

  4. H. Rao, G. Bosman, Solid-State Electron. 79, 11 (2013)

    Article  ADS  Google Scholar 

  5. T. Brazzini, M.A. Casbon, H.R. Sun, M.J. Uren, J. Lees, P.J. Tasker, H. Jung, H. Blanck, M. Kuball, Appl. Phys. Lett. 106, 213502 (2015).

  6. M. Ťapajna, R.J.T. Simms, M. Faqir, M. Kuball, Y. Pei, U.K. Mishra, Presented at the 2010 IEEE International Reliability Physics Symposium, 2010 (unpublished).

  7. Q. Hao, H.B. Zhao, Y. Xiao, M.B. Kronenfeld, Int. J. Heat Mass Transf. 116, 496 (2018)

    Article  Google Scholar 

  8. I. Hwang, J. Kim, S. Chong, H.S. Choi, S.K. Hwang, J. Oh, J.K. Shin, U.I. Chung, IEEE Electron Device Lett. 34, 1494 (2013)

    Article  ADS  Google Scholar 

  9. L.-F. Mao, H.-S. Ning, J.-Y. Wang, PLoS ONE 10, e0128438 (2015).

  10. J. Kotani, J. Yaita, A. Yamada, N. Nakamura, K. Watanabe, J. Appl. Phys. 127, 234501 (2020).

  11. L.F. Mao, IEEE Electron Device Lett. 28, 161 (2007)

    Article  ADS  Google Scholar 

  12. L.F. Mao, Appl. Phys. Lett. 90, 183511 (2007).

  13. L.F. Mao, Appl. Phys. Lett. 91, 123519 (2007).

  14. L.F. Mao, H. Ning, Z.L. Huo, J.Y. Wang, Sci. Rep. 5, 18307 (2015)

    Article  ADS  Google Scholar 

  15. L.F. Mao, H. Ning, C. Hu, Z. Lu, G. Wang, Sci. Rep. 6, 24777 (2016)

    Article  ADS  Google Scholar 

  16. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey, 2006).

  17. A. Rashmi, S. Kranti, R.S. Haldar, Gupta. Solid-State Electron. 46, 621 (2002)

    Article  ADS  Google Scholar 

  18. A. Loghmany, P. Valizadeh, J. Phys. D—Appl. Phys. 44, 125102 (2011).

  19. S. Rabbaa, J. Stiens, J. Phys. D—Appl. Phys. 44, 325103 (2011).

  20. A. Pais, Rev. Mod. Phys. 51, 863 (1979)

    Article  ADS  Google Scholar 

  21. V.K. Khanna, Extreme-Temperature and Harsh-Environment Electronics.

  22. D.C. Look, D.K. Lorance, J.R. Sizelove, C.E. Stutz, K.R. Evans, D.W. Whitson, J. Appl. Phys. 71, 260 (1992)

    Article  ADS  Google Scholar 

  23. M.A. Huque, S.A. Eliza, T. Rahman, H.F. Huq, S.K. Islam, Solid-State Electron. 53, 341 (2009)

    Article  ADS  Google Scholar 

  24. K.K. Young, IEEE Trans. Electron Devices 36, 399 (1989).

  25. S.H. Lee, Y.S. Yu, S.W. Hwang, D. Ahn, IEEE Trans. Nanotechnol. 8, 643 (2009)

    Article  ADS  Google Scholar 

  26. T. Sawada, Y. Ito, K. Imai, K. Suzuki, H. Tomozawa, S. Sakai, Appl. Surf. Sci. 159–160, 449 (2000)

    Article  ADS  Google Scholar 

  27. A.S. Barker, M. Ilegems, Phys. Rev. B 7, 743 (1973)

    Article  ADS  Google Scholar 

  28. X.D. Wang, W.D. Hu, X.S. Chen, J.T. Xu, X.Y. Li, W. Lu, Opt. Quant. Electron. 42, 755 (2011)

    Article  Google Scholar 

  29. Y.I. Alivov, E.V. Kalinina, A.E. Cherenkov, D.C. Look, B.M. Ataev, A.K. Omaev, M.V. Chukichev, D.M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003)

    Article  ADS  Google Scholar 

  30. T.R. Lenka, A.K. Panda, Pramana 79, 151 (2012)

    Article  ADS  Google Scholar 

  31. Yu. Tsung-Hsing, K.F. Brennan, J. Appl. Phys. 89, 3827 (2001)

    Article  ADS  Google Scholar 

  32. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B 77, 075202 (2008).

  33. S. Schöche, P. Kühne, T. Hofmann, M. Schubert, D. Nilsson, A. Kakanakova-Georgieva, E. Janzén, V. Darakchieva, Appl. Phys. Lett. 103, 212107 (2013).

  34. D.J. As, A. Zado, Q.Y. Wei, T. Li, J.Y. Huang, F.A. Ponce, Japanese J. Appl. Phys. 52, 08JN04 (2013).

  35. Y. Xu, H.-Q. Sun, Y.-N. Xiao, S.-Y. Han, F. Ke, presented at the Advances in Optoelectronics and Micro/nano-optics, 2010 (unpublished).

  36. G. Abstreiter, K. Ploog, Phys. Rev. Lett. 42, 1308 (1979)

    Article  ADS  Google Scholar 

  37. A.J. Fischer, W. Shan, J.J. Song, Y.C. Chang, R. Horning, B. Goldenberg, Appl. Phys. Lett. 71, 1981 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the National Natural Science Foundation of China under Grant No. 61774014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Feng Mao.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, LF. Modeling source–drain voltage-dependent energy needed for emission or absorption of a photon in GaN devices. Appl. Phys. A 128, 149 (2022). https://doi.org/10.1007/s00339-022-05282-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05282-w

Keywords

Navigation