Skip to main content
Log in

Magnetic properties of new (1−x)Bi1/2Na1/2TiO3+xBaNiO3−δ solid solution materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

New solid solution (1−x)Bi1/2Na1/2TiO3+xBaNiO3−δ materials were synthesized by a chemical method. The X-ray diffraction and Raman scattering structure studies confirmed that the BaNiO3−δ materials were well soluted in the host Bi1/2Na1/2TiO3 materials. The random incorporation of Ba and Ni into the host Bi1/2Na1/2TiO3 materials was displayed by the optical properties where the optical bandgap values were reduced, and the photoluminescence was suppressed. The complex magnetic properties of Bi1/2Na1/2TiO3 materials were obtained as a function of BaNiO3−δ amounts in the solid solutions. The role of co-modification of A- and B-sites via alkaline earth metals and transition metals as substitution and interstitially on magnetic properties of Bi1/2Na1/2TiO3 materials was experimentally proposed, which is further supported by first-principles density functional theory calculations. We expected that our work provided a new method to inject the ferromagnetic properties in lead-free ferroelectric materials for smart electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. N.A. Spaldin, R. Ramesh, Nature Mater. 18, 203–212 (2019)

    Article  Google Scholar 

  2. S. Shevlin, Nature Mater. 18, 191–192 (2018)

    Article  Google Scholar 

  3. N.A. Spaldin, Proc. R. Soc. A 476, 20190542 (2020)

    Article  ADS  Google Scholar 

  4. N.D. Quan, L.H. Bac, D.V. Thiet, V.N. Hung, D.D. Dung, Adv. Mater. Sci. Eng. 2014, 365391 (2014)

    Article  Google Scholar 

  5. G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, N.N. Krainic, J. Sov. Phys. Solid State 2, 2651–2654 (1961)

    Google Scholar 

  6. L. Ju, C. Shi, L. Sun, Y. Zhang, H. Qin, J. Hu, J. Appl. Phys. 116, 083909 (2014)

    Article  ADS  Google Scholar 

  7. N.T. Hung, N.H. Lam, A.D. Nguyen, L.H. Bac, N.N. Trung, D.D. Dung, Y.S. Kim, N. Tsogbadrakh, T. Ochirkhuyag, D. Odkhuu, Sci. Rep. 10, 6189 (2020)

    Article  ADS  Google Scholar 

  8. L.T.H. Thanh, N.B. Doan, N.Q. Dung, L.V. Cuong, L.H. Bac, N.A. Duc, P.Q. Bao, D.D. Dung, J. Electron. Mater. 46, 3367–3372 (2017)

    Article  ADS  Google Scholar 

  9. L.T.H. Thanh, N.B. Doan, L.H. Bac, D.V. Thiet, S. Cho, P.Q. Bao, D.D. Dung, Mater. Lett. 186, 239–242 (2017)

    Article  Google Scholar 

  10. D.D. Dung, N.B. Doan, N.Q. Dung, N.H. Linh, L.H. Bac, L.T.H. Thanh, N.N. Trung, N.V. Duc, L.V. Cuong, D.V. Thiet, S. Cho, J. Supercond. Novel Magn. 32, 3011–3018 (2019)

    Article  Google Scholar 

  11. D.D. Dung, N.B. Doan, N.Q. Dung, L.H. Bac, N.H. Linh, L.T.H. Thanh, D.V. Thiet, N.N. Trung, N.C. Khang, T.V. Trung, N.V. Duc, J. Sci. Adv. Mater. Dev. 4, 584–590 (2019)

    Google Scholar 

  12. D.D. Dung, N.Q. Dung, N.B. Doan, N.H. Linh, L.H. Bac, N.N. Trung, N.V. Duc, L.T.H. Thanh, L.V. Cuong, D.V. Thiet, S. Cho, J. Supercond. Novel Magn. 33, 911–920 (2020)

    Article  Google Scholar 

  13. M.M. Hue, N.Q. Dung, N.N. Trung, L.H. Bac, L.T.K. Phuong, N.V. Duc, D.D. Dung, Appl. Phys. A 124, 588 (2018)

    Article  ADS  Google Scholar 

  14. M.M. Hue, N.Q. Dung, L.T.K. Phuong, N.N. Trung, N.V. Duc, L.H. Bac, D.D. Dung, J. Magn. Magn. Mater. 471, 164–168 (2019)

    Article  ADS  Google Scholar 

  15. D.D. Dung, N.Q. Dung, M.M. Hue, N.H. Lam, L.H. Bac, L.T.K. Phuong, N.N. Trung, D.D. Tuan, N.D. Quan, D. Sangaa, D. Odkhuu, Vacuum 179, 109551 (2020)

    Article  ADS  Google Scholar 

  16. D.D. Dung, M.M. Hue, N.Q. Dung, N.H. Lam, L.T.K. Phuong, L.H. Bac, N.N. Trung, N.V. Duc, D. Odkhuu, J. Electroceram. 44, 129–135 (2020)

    Article  Google Scholar 

  17. D.D. Dung, N.T. Hung, Appl. Phys. A 126, 240 (2020)

    Article  ADS  Google Scholar 

  18. D.D. Dung, N.T. Hung, J. Supercond. Novel Magn. 33, 1249–1256 (2020)

    Article  Google Scholar 

  19. D.D. Dung, N.T. Hung, J. Electron. Mater. 49, 5317–5325 (2020)

    Article  Google Scholar 

  20. N.T. Hung, L.H. Bac, N.N. Trung, N.T. Hoang, P.V. Vinh, D.D. Dung, J. Magn. Magn. Mater. 451, 183–186 (2018)

    Article  ADS  Google Scholar 

  21. N.T. Hung, L.H. Bac, N.T. Hoang, P.V. Vinh, N.N. Trung, D.D. Dung, Physica B 531, 75–78 (2018)

    Article  ADS  Google Scholar 

  22. D.D. Dung, N.T. Hung, D. Odkhuu, J Magn. Magn. Mater. 482, 31–37 (2019)

    Article  ADS  Google Scholar 

  23. D.D. Dung, N.T. Hung, D. Odkhuu, Appl. Phys. A 125, 465 (2019)

    Article  ADS  Google Scholar 

  24. D.D. Dung, N.T. Hung, D. Odkhuu, Sci. Rep. 3, 18186 (2019)

    Article  ADS  Google Scholar 

  25. J.G. Lee, H.J. Hwang, O. Kwon, O.S. Jeon, J. Jang, Y.G. Shul, Chem. Commun. 52, 10731–10734 (2016)

    Article  Google Scholar 

  26. R. Gottschall, R. Schollhorn, M. Muhler, N. Jansen, D. Walcher, P. Gutlich, Inorg. Chem. 37, 1513–1518 (1998)

    Article  Google Scholar 

  27. A.M.A. Lopez, M. Huve, P. Simon, O. Mentre, Chem. Commun. 55, 3717–3720 (2019)

    Article  Google Scholar 

  28. J.J. Lander, Acta Cryst. 4, 148–156 (1951)

    Article  Google Scholar 

  29. R.D. Shannon, Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  30. C. Chatzichristodoulou, P. Norby, P.V. Hendriksen, M.B. Mogensen, J. Electroceram. 34, 100–107 (2015)

    Article  Google Scholar 

  31. I.K. Jeong, Y.S. Sung, T.K. Song, M.H. Kim, A. Llobet, J. Korean Phys. Soc. 67, 1583–1587 (2015)

    Article  ADS  Google Scholar 

  32. Z. Chen, C. Yuan, X. Liu, L. Meng, S. Cheng, J. Xu, C. Zhou, J. Wang, G. Rao, Mater. Sci. Semicond. Proc. 115, 105089 (2020)

    Article  Google Scholar 

  33. X. Liu, H. Fan, J. Shi, L. Wang, H. Du, RSC Adv. 6, 30623–30627 (2016)

    Article  ADS  Google Scholar 

  34. M.K. Niranjan, T. Karthik, S. Asthana, J. Pan, U.V. Waghmare, J. Appl. Phys. 113, 194106 (2013)

    Article  ADS  Google Scholar 

  35. J. Kreisel, A.M. Glazer, J. Phys. Condens. Matter. 12, 9689–9698 (2000)

    Article  ADS  Google Scholar 

  36. D. Schutz, M. Deluca, W. Krauss, A. Feteira, T. Jackson, K. Reichmann, Adv. Func. Mater. 22, 2285–2294 (2012)

    Article  Google Scholar 

  37. D.D. Dung, M.M. Hue, N.Q. Dung, L.T.K. Phuong, L.H. Bac, N.X. Duong, P.D. Luong, N.A. Duc, N.N. Trung, N.H. Thoan, D. Odkhuu, Vacuum 177, 109306 (2020)

    Article  ADS  Google Scholar 

  38. S.K. Pradhan, S.K. De, Ceram. Inter. 44, 15181–15191 (2018)

    Article  Google Scholar 

  39. N.H. Linh, N.H. Tuan, D.D. Dung, P.Q. Bao, B.T. Cong, L.T.H. Thanh, J. Sci. Adv. Mater. Dev. 4, 492–498 (2019)

    Google Scholar 

  40. C. Kittel, Introduction to solid state physics (8th edn) (Wiley, 2004), pp. 187–190.

  41. V. Schmitt, F. Raether, J. European Ceram. Soc. 34, 15–21 (2014)

    Article  Google Scholar 

  42. J. Yin, H. Tao, G. Liu, J. Wu, J. American Ceram. Soc. 103, 1881–1890 (2020)

    Article  Google Scholar 

  43. Y. Lin, C.W. Nan, J. Wang, H. He, J. Zhai, L. Jiang, Mater. Lett. 58, 829–832 (2004)

    Article  Google Scholar 

  44. L.H. Bac, L.T.H. Thanh, N.V. Chinh, N.T. Khoa, D.V. Thiet, T.V. Trung, D.D. Dung, Mater. Lett. 164, 631–635 (2016)

    Article  Google Scholar 

  45. Y. Takeda, M. Shimada, F. Kanamaru, M. Koizumi, Chem. Lett. 3, 107–108 (1974)

    Article  Google Scholar 

  46. J.J. Lander, L.A. Wooten, J. American Chem. Soc. 73, 2452–2454 (1951)

    Article  Google Scholar 

  47. M. Matsuda, K. Katsumata, A. Zheludev, S.M. Shapiro, G. Shirane, J. Phys. Chem. Solids 60, 1121–1123 (1999)

    Article  ADS  Google Scholar 

  48. P.J. Baker, T. Lancaster, S.K. Blundell, M.L. Brooks, W. Hayes, D. Prabhakaran, F.L. Pratt, Phys. Rev. B 72, 104414 (2005)

    Article  ADS  Google Scholar 

  49. G.S. Heller, J.J. Stickler, S. Kern, A. Wold, J. Appl. Phys. 34, 1033 (1963)

    Article  ADS  Google Scholar 

  50. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  51. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  52. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  53. J. Padilla, D. Vanderbilt, Phys Rev B 56, 1625 (1997)

    Article  ADS  Google Scholar 

  54. D.D. Dung, N.H. Lam, A.D. Nguyen, N.N. Trung, N.V. Duc, N.T. Hung, Y.S. Kim, D. Odkhuu, Sci. Rep. 11, 8908 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development Vietnam (NAFOSTED) under grant number 103.02-2019.366. This work is supported by the Incheon National University Research Grant No. 20180438. This research was partially supported by the Nippon Sheet Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Duc Dung.

Ethics declarations

Ethical approval

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. The authors can confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. The authors further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dung, D.D., Thoan, N.H., Van Vinh, P. et al. Magnetic properties of new (1−x)Bi1/2Na1/2TiO3+xBaNiO3−δ solid solution materials. Appl. Phys. A 128, 168 (2022). https://doi.org/10.1007/s00339-022-05281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05281-x

Keywords

Navigation