Skip to main content
Log in

Numerical and experimental study on bandgap property of two-dimensional lattice with nested core

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new two-dimensional lattice structure was proposed by embedding a core to a square lattice. Wave propagation of the periodic structure was studied based on Bloch’s theorem and finite element method. The effects of similarity ratio (\(\eta\)) and the shape of nested core (square core, circular core and re-entrant core) on bandgap distribution were investigated. The anisotropy of wave propagation was studied by analyzing phase velocity and group velocity. Via frequency dispersion analysis, the mechanism of \(\eta\) tuning the bandgap distribution was demonstrated. With \(\eta\) increasing, the first bandgap of the square lattice with nested core widened and the total bandgap width increased. The square lattice with nested core of Lf = 50 mm at \(\eta\) = 0.95 had the lowest opening frequency (30.60 Hz) of the first bandgap whose width of the first bandgap was 366.26 Hz and also exhibited apparent anisotropy of wave propagation in the first and fourth mode. Concerning the practical application, a single-phase structure was proposed and studied. Thanks to additive manufacturing technology, the single-phase structure was prepared, and a low amplitude test was performed. The experimental result demonstrated the presence of an ultrawide vibration attenuation zone identical to the numerical results, which may pave the way for the practical application of the proposed lattice metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. N.A. Fleck, V.S. Deshpande, M.F. Ashby, Micro-architectured materials: past, present and future. P. Roy. Soc. A Math. Phy. 466(2121), 2495–2516 (2010). https://doi.org/10.1098/rspa.2010.0215

    Article  Google Scholar 

  2. D. Li, R.C. Gao, L. Dong, W.K. Lam, F.P. Zhang, A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness. Smart Mater. Struct. 29(4), 6 (2020). https://doi.org/10.1088/1361-665X/ab6696

    Article  Google Scholar 

  3. D. Li, J.H. Yin, L. Dong, R.S. Lakes, Strong re-entrant cellular structures with negative Poisson’s ratio. J. Mater. Sci. 53(5), 3493–3499 (2018). https://doi.org/10.1007/s10853-017-1809-8

    Article  ADS  Google Scholar 

  4. J. Hou, D. Li, L. Dong, Mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio. J. Mater. Sci. 53(14), 10209–10216 (2018). https://doi.org/10.1007/s10853-018-2298-0

    Article  ADS  Google Scholar 

  5. W.T. Lv, D. Li, L. Dong, Study on mechanical properties of a hierarchical octet-truss structure. Compos. Struct. 249, 6 (2020). https://doi.org/10.1016/j.compstruct.2020.112640

    Article  Google Scholar 

  6. L.G. P. Vidal, O. Polit., Thermo-mechanical analysis of laminated composite and sandwich beams based on a variables separation. Compos. Struct. 152, 12 (2016). Doi: https://doi.org/10.1016/j.compstruct.2016.05.082.

  7. W. Lv, D. Li, L. Dong, Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson's ratio. Int. J. Mech. Sci. 191, 106105 (2021). Doi: https://doi.org/10.1016/j.ijmecsci.2020.106105.

  8. C.M. Taylor, C.W. Smith, W. Miller, K.E. Evans, Functional grading in hierarchical honeycombs: density specific elastic performance. Compos. Struct. 94(8), 2296–2305 (2012). https://doi.org/10.1016/j.compstruct.2012.01.021

    Article  Google Scholar 

  9. D. Mousanezhad, S. Babaee, H. Ebrahimi, R. Ghosh, A.S. Hamouda, K. Bertoldi, A. Vaziri, Hierarchical honeycomb auxetic metamaterials. Sci. Rep. 5, 8 (2015). https://doi.org/10.1038/srep18306

    Article  Google Scholar 

  10. D. Li, J.H. Yin, L. Dong, R.S. Lakes, Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio. Smart Mater. Struct. 26(2), 7 (2017). https://doi.org/10.1088/1361-665x/26/2/025014

    Article  Google Scholar 

  11. D. Li, L. Dong, J.H. Yin, R.S. Lakes, Negative Poisson’s ratio in 2D Voronoi cellular solids by biaxial compression: a numerical study. J. Mater. Sci. 51(14), 7029–7037 (2016). https://doi.org/10.1007/s10853-016-9992-6

    Article  ADS  Google Scholar 

  12. D. Li, J. Ma, L. Dong, R.S. Lakes, Three-dimensional stiff cellular structures with negative Poisson’s ratio. Phys. Status Solid B. 254(12), 5 (2017). https://doi.org/10.1002/pssb.201600785

    Article  Google Scholar 

  13. M.I. Hussein, M.J. Leamy, M. Ruzzene, Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook. Appl. Mech. Rev. 66(4), (2014). Doi: https://doi.org/10.1115/1.4026911.

  14. R. Martinezsala, J. Sancho, J.V. Sanchez, V. Gomez, J. Llinares, F. Meseguer, Sound-attenuation by sculpture. Nature 378(6554), 241–241 (1995). https://doi.org/10.1038/378241a0

    Article  ADS  Google Scholar 

  15. R.V. Craster, S. Guenneau, Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, 1st edn. (Springer, Dordrecht, 2013)

    Book  Google Scholar 

  16. M.C. Messner, M.I. Barham, M. Kumar, N.R. Barton, Wave propagation in equivalent continuums representing truss lattice materials. Int. J. Solids Struct. 73–74, 55–66 (2015). https://doi.org/10.1016/j.ijsolstr.2015.07.023

    Article  Google Scholar 

  17. Y.-F. Wang, Y.-S. Wang, C. Zhang, Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures. J. Phys. D: Appl. Phys. 47(48), (2014). https://doi.org/10.1088/0022-3727/47/48/485102.

  18. M.J. Leamy, Exact wave-based Bloch analysis procedure for investigating wave propagation in two-dimensional periodic lattices. J. Sound Vib. 331(7), 1580–1596 (2012). https://doi.org/10.1016/j.jsv.2011.11.023

    Article  ADS  Google Scholar 

  19. S. Gonella, M. Ruzzene, Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. J. Sound Vib. 312(1–2), 125–139 (2008). https://doi.org/10.1016/j.jsv.2007.10.033

    Article  ADS  MATH  Google Scholar 

  20. K. Billon, I. Zampetakis, F. Scarpa, M. Ouisse, E. Sadoulet-Reboul, M. Collet, A. Perriman, A. Hetherington, Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Compos. Struct. 160, 1042–1050 (2017). https://doi.org/10.1016/j.compstruct.2016.10.121

    Article  Google Scholar 

  21. A. Spadoni, M. Ruzzene, S. Gonella, F. Scarpa, Phononic properties of hexagonal chiral lattices. Wave Motion 46(7), 435–450 (2009). https://doi.org/10.1016/j.wavemoti.2009.04.002

    Article  MathSciNet  MATH  Google Scholar 

  22. A.S. Phani, J. Woodhouse, N.A. Fleck, Wave propagation in two-dimensional periodic lattices. J Acoust. Soc. Am. 119(4), 1995–2005 (2006). https://doi.org/10.1121/1.2179748

    Article  ADS  Google Scholar 

  23. P.G.M.A.B. Movchan, Vibrations of lattice structures and phononic band gaps. Q. J. Mech. Appl. Math. 56(1), 19 (2003). Doi: https://doi.org/10.1093/qjmam/56.1.45.

  24. K. Zhang, Z.C. Deng, J.M. Meng, X.J. Xu, Wave propagation in hexagonal lattices with plateau borders. Compos. Struct. 140, 525–533 (2016). https://doi.org/10.1016/j.compstruct.2015.12.046

    Article  Google Scholar 

  25. M. Schaeffer, M. Ruzzene, Wave propagation in reconfigurable magneto-elastic kagome lattice structures. J. Appl. Phys. 117(19), 6 (2015). https://doi.org/10.1063/1.4921358

    Article  Google Scholar 

  26. W. Wu, W. Hu, G. Qian, H. Liao, X. Xu, F. Berto, Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater. Des. 180, (2019). Doi: https://doi.org/10.1016/j.matdes.2019.107950.

  27. X.N. Liu, G.K. Hu, C.T. Sun, G.L. Huang, Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330(11), 2536–2553 (2011). https://doi.org/10.1016/j.jsv.2010.12.014

    Article  ADS  Google Scholar 

  28. J. Hou, D. Li, L. Dong, Study on Band‐Gap Behaviors of 2D Hierarchical Re‐Entrant Lattice Structures. Phys. Status Solid B. 256(5), (2019). Doi: https://doi.org/10.1002/pssb.201800693.

  29. J. Meng, Z. Deng, K. Zhang, X. Xu, Wave propagation in hexagonal and re-entrant lattice structures with cell walls of non-uniform thickness. Waves in Random and Complex Media. 25(2), 223–242 (2015). https://doi.org/10.1080/17455030.2015.1005195

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. S. Mukherjee, S. Fabrizio, S. Gopalakrishnan, Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core. Smart Mater. Struct. 25(5), (2016). Doi: https://doi.org/10.1088/0964-1726/25/5/054011.

  31. K. Zhang, P. Zhao, C. Zhao, F. Hong, Z. Deng, Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices. Compos. Struct. 238, (2020). Doi: https://doi.org/10.1016/j.compstruct.2020.111952.

  32. K. Zhang, Y. Su, P. Zhao, Z. Deng, Tunable wave propagation in octa-chiral lattices with local resonators. Compos. Struct. 220, 114–126 (2019). https://doi.org/10.1016/j.compstruct.2019.03.076

    Article  Google Scholar 

  33. K. Zhang, P. Zhao, F. Hong, Y. Yu, Z. Deng, On the directional wave propagation in the tetrachiral and hexachiral lattices with local resonators. Smart Mater. Struct. 29(1), (2020). Doi: https://doi.org/10.1088/1361-665X/ab5764.

  34. G. Trainiti, J.J. Rimoli, M. Ruzzene, Wave propagation in undulated structural lattices. Int. J. Solids Struct. 97–98, 431–444 (2016). https://doi.org/10.1016/j.ijsolstr.2016.07.006

    Article  Google Scholar 

  35. G. Trainiti, J.J. Rimoli, M. Ruzzene, Wave propagation in periodically undulated beams and plates. Int. J. Solids Struct. 75–76, 260–276 (2015). https://doi.org/10.1016/j.ijsolstr.2015.08.019

    Article  Google Scholar 

  36. B. Haghpanah, H. Ebrahimi, D. Mousanezhad, J. Hopkins, A. Vaziri, Programmable Elastic Metamaterials. Adv. Eng. Mater. 18(4), 643–649 (2016). https://doi.org/10.1002/adem.201500295

    Article  Google Scholar 

  37. Q. Zhang, K. Zhang, G.K. Hu, Tunable fluid-solid metamaterials for manipulation of elastic wave propagation in broad frequency range. Appl. Phys. Lett. 112(22), 4 (2018). https://doi.org/10.1063/1.5023307

    Article  Google Scholar 

  38. K.C. Chuang, X.F. Lv, D.F. Wang, A tunable elastic metamaterial beam with flat-curved shape memory alloy resonators. Appl. Phys. Lett. 114(5), 5 (2019). https://doi.org/10.1063/1.5084548

    Article  Google Scholar 

  39. P. Wang, F. Casadei, S.C. Shan, J.C. Weaver, K. Bertoldi, Harnessing Buckling to design tunable locally resonant acoustic metamaterials. Phys. Rev. Lett. 113(1), 5 (2014). https://doi.org/10.1103/PhysRevLett.113.014301

    Article  Google Scholar 

  40. Y.-S. Wang, W. Chen, B. Wu, Y.-Z. Wang, Y.-F. Wang, Tunable and Active Phononic Crystals and Metamaterials. Appl. Mech. Rev. 72(4), (2020). Doi: https://doi.org/10.1115/1.4046222.

  41. R.K. Pal, J. Rimoli, M. Ruzzene, Effect of large deformation pre-loads on the wave properties of hexagonal lattices. Smart Mater. Struct. 25(5), (2016). Doi: https://doi.org/10.1088/0964-1726/25/5/054010.

  42. K. Zhang, Y.-C. Su, X.-H. Hou, J.-M. Meng, Z.-C. Deng, Effect of pre-load on wave propagation characteristics of hexagonal lattices. Compos. Struct. 203, 361–372 (2018). https://doi.org/10.1016/j.compstruct.2018.07.033

    Article  Google Scholar 

  43. X. An, H. Fan, C. Zhang, Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures. J. Sound Vib. 475, (2020). Doi: https://doi.org/10.1016/j.jsv.2020.115292.

  44. S. Wen, Y. Xiong, S. Hao, F. Li, C. Zhang, Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections. Int. J. Mech. Sci. 166, (2020). Doi: https://doi.org/10.1016/j.ijmecsci.2019.105229.

  45. K. Zhang, C. Zhao, J. Luo, Y. Ma, Z. Deng, Analysis of temperature-dependent wave propagation for programmable lattices. Int. J. Mech. Sci. 171, (2020). Doi: https://doi.org/10.1016/j.ijmecsci.2019.105372.

  46. F. Maurin, A. Spadoni, Wave dispersion in periodic post-buckled structures. J. Sound Vib. 333(19), 4562–4578 (2014). https://doi.org/10.1016/j.jsv.2014.04.029

    Article  ADS  Google Scholar 

  47. C.W. Muhammad, Lim, Phononic metastructures with ultrawide low frequency three-dimensional bandgaps as broadband low frequency filter. Sci. Rep. 11(1), 7137 (2021). https://doi.org/10.1038/s41598-021-86520-8

    Article  ADS  Google Scholar 

  48. H.J. Rice, J. Kennedy, P. Göransson, L. Dowling, D. Trimble, Design of a Kelvin cell acoustic metamaterial. J. Sound Vib. 472, (2020). Doi: https://doi.org/10.1016/j.jsv.2019.115167.

  49. J. Kennedy, L. Flanagan, L. Dowling, G.J. Bennett, H. Rice, D. Trimble, The influence of additive manufacturing processes on the performance of a periodic acoustic metamaterial. Int. J. Polym. Sci. 2019, 1–11 (2019). https://doi.org/10.1155/2019/7029143

    Article  Google Scholar 

  50. W. Elmadih, D. Chronopoulos, W.P. Syam, I. Maskery, H. Meng, R.K. Leach, Three-dimensional resonating metamaterials for low-frequency vibration attenuation. Sci. Rep. 9(1), 11503 (2019). https://doi.org/10.1038/s41598-019-47644-0

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by “National Key Research and Development Program of China (2018YFF0300502),” “Liaoning Province Key Research and Development Program (2020JH2/10300112)” and “The Fundamental Research Funds for the Central Universities (N2105022).”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Zhang or Dong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 1338 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Zhang, Z. & Li, D. Numerical and experimental study on bandgap property of two-dimensional lattice with nested core. Appl. Phys. A 128, 164 (2022). https://doi.org/10.1007/s00339-022-05280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05280-y

Keywords

Navigation