Skip to main content
Log in

Dielectric, ferroelectric, magnetic and electrical properties of Sm-doped GaFeO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of Sm doping on structural, dielectric, multiferroic and electrical properties of GaFeO3 with composition GaFe1-xSmxO3 (x = 0, 0.05, 0.10, 0.15) is studied. Rietveld refinement of the XRD data reveals the formation of single-phase orthorhombic structure. It is observed that the unit cell volume increases with rise in Sm content. FESEM study reveals that the irregular-shaped grains are uniformly distributed throughout the surface. From dielectric plot, a significant variation in εr and tanδ with Sm content is observed. Further, conjugate existence of both ferroelectric and magnetic ordering is confirmed by polarisation and magnetization hysteresis loop measurement. The remanent polarisation (Pr) is decreased with Sm content due to the defects related to fluctuations in the valance of Fe in the studied samples. Also, the remanent magnetization (Mr) is found to fall with rise in Sm content due to the lower magnetic moment (μ) of Sm3+. Impedance analysis shows the existence of two types of relaxation in studied materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ming Liu and Ziyao Zhou: Integrated Multiferroic Heterostructures and Applications, John Wiley & Sons Ltd, 2019.

  2. Ashim Kumar Bain, Prem Chand: Ferroelectrics , John Wiley & Sons Ltd, 2017.

  3. Junling Wang: Multiferroic Materials Properties, Techniques, and Applications Taylor & Francis Group, LLC, 2017.

  4. Miguel Algueró, J. M. Gregg, Liliana Mitoseriu: Nanoscale Ferroelectrics and Multiferroics Key Processing and Characterization Issues,and Nanoscale Effects , John Wiley & Sons Ltd, 2016.

  5. J.P. Velev, S.S. Jaswal, E.Y. Tsymbal, Multi-ferroic and magnetoelectric materials and interfaces. Philosophical Trans. Royal Soc. A Math. Phys. Eng. Sci. 369, 3069–3097 (1948). https://doi.org/10.1098/rsta.2010.0344

    Article  ADS  Google Scholar 

  6. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  ADS  Google Scholar 

  7. Y. Kaneko, T. Arima, J.P. He, R. Kumai, Y. Tokura, Magnetic and crystal structures of polar ferrimagnet Ga2−xFexO3. J Magn. Magn. Mat. 272–276, 555–556 (2004). https://doi.org/10.1016/j.jmmm.2003.11.202

    Article  ADS  Google Scholar 

  8. J. Atanelov, P. Mohn, Electronic and magnetic properties of GaFeO3: Ab initio calculations for varying Fe/Ga ratio, inner cationic site disorder, and epitaxial strain. Phys. Rev. B 92, 104408 (2015). https://doi.org/10.1103/PhysRevB.92.104408

    Article  ADS  Google Scholar 

  9. M.J. Han, T. Ozaki, J. Yu, Magnetic ordering and exchange interactions in multiferroic GaFeO3. Phys. Rev. B 75, 060404(R) (2007). https://doi.org/10.1103/PhysRevB.75.060404

    Article  ADS  Google Scholar 

  10. R.B. Frankel, N.A. Blum, S. Foner, A.J. Freeman, M. Schieber, Ferrimagnetic structure of magnetoelectrric Ga2−xFexO3. Phys. Rev. Lett. 15, 958–960 (1965). https://doi.org/10.1103/PhysRevLett.15.958

    Article  ADS  Google Scholar 

  11. G.T. Rado, Observation and possible mechanisms of magnetoelectric effects in a ferromagnet. Phys. Rev. Lett. 13, 335–337 (1964). https://doi.org/10.1103/PhysRevLett.13.335

    Article  ADS  Google Scholar 

  12. A. Roy, R. Prasad, S. Auluck, A. Garg, Effect of site-disorder on magnetism and magneto-structural coupling in gallium ferrite: A first-principles study. J. Appl. Phys. 111, 043915 (2012). https://doi.org/10.1063/1.3688852

    Article  ADS  Google Scholar 

  13. J.P. Remeika, GaFeO3: A ferromagnetic-piezoelectric compound. J. Appl. Phys. 263, 3–5 (1960). https://doi.org/10.1063/1.1984690

    Article  Google Scholar 

  14. G.H. Jonker, Magnetic compounds with perovskite structure IV Conducting and non-conducting compounds. Physica 22, 707–722 (1956). https://doi.org/10.1016/S0031-8914(56)90023-4

    Article  ADS  Google Scholar 

  15. J. Wang, V. Aguilar, L. Li, F.gen Li W., zhong Wang and G.meng Zhao, Strong shape-dependence of Morin transition in α-Fe2O3 single-crystalline nanostructures. Nano Res (2015). https://doi.org/10.1007/s12274-014-0700-z

    Article  Google Scholar 

  16. M.B. Mohamed, A. Senyshyn, H. Ehrenberg, H. Fuess, Structural, magnetic, dielectric properties of multiferroic GaFeO3 prepared by solid state reaction and sol–gel methods. J. Alloys Compd. 492, L20–L27 (2010). https://doi.org/10.1016/j.jallcom.2009.11.099

    Article  Google Scholar 

  17. N. Sharma, A.K. Mall, R. Gupta, A. Garg, S. Kumar, Effect of sintering temperature on structure and properties of GaFeO3. J. Alloys Compd. 737, 646–654 (2018). https://doi.org/10.1016/j.jallcom.2017.12.122

    Article  Google Scholar 

  18. R. Saha, A. Shireen, S.N. Shirodkar, U.V. Waghmare, A. Sundaresan, C.N.R. Rao, Effect of Cr and Mn ions on the structure and magnetic properties of GaFeO3: Role of the substitution site. J. Solid State Chem. 184, 2353–2359 (2011). https://doi.org/10.1016/j.jssc.2011.07.006

    Article  ADS  Google Scholar 

  19. T.C. Han, Y.C. Lee, Y.T. Chu, Effect of cobalt doping on site-disorder and magnetic behavior of magnetoelectric GaFeO3 nanoparticles. App. Phys. Lett. 105, 212407–212414 (2014). https://doi.org/10.1063/1.4902874

    Article  ADS  Google Scholar 

  20. R. Kumar, A.K. Mall, R. Gupta, Raman Effect Structural and Dielectric Properties of Sol-Gel Synthesized Polycrystalline GaFe1-xZrxO3 (0≤x≤0.15). AIP Conf. Proc. 10(1063/1), 4948218 (2016)

    Google Scholar 

  21. A. Ghani, S. Yang, S.S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Z. Yu, Y. Zhang, X. Song, X. Ren, Electric modulation of conduction in multiferroic Ni-doped GaFeO3 ceramics. J. Phys. D: Appl. Phys. 51, 225002–225014 (2018). https://doi.org/10.1088/1361-6463/aaba34

    Article  ADS  Google Scholar 

  22. S. Sen, N. Chakraborty, P. Rana, R. Sahu, S. Singh, A.K. Panda, S. Tripathy, D.K. Pradhan, A. Sen, Effect of Ti doping on the structural, electrical and magnetic properties of GaFeO3. J. Mat. Sc. Mat. Elect. 27, 4647–4652 (2016). https://doi.org/10.1007/s10948-018-4602-2

    Article  Google Scholar 

  23. C. Song, X. Yan, Q. Liu, J.-X. Sui, H.-S. Zhao, S. Xu, F. Yuan, Y.-Z. Long, Magnetic and ferroelectric properties of Indium-doped gallium ferrite. J. Mag. Magn. Mater 469, 8–12 (2019). https://doi.org/10.1016/j.jmmm.2018.08.032

    Article  ADS  Google Scholar 

  24. T.C. Han, Y.D. Chung, Y.C. Lee, Enhancement of multiferroic and magnetocapacitive properties in nanocrystalline Mg-doped GaFeO3. J. Alloys Compd. 692, 569–572 (2017). https://doi.org/10.1016/j.jallcom.2016.09.111

    Article  Google Scholar 

  25. I. Raies, S.A. Dulmani, M. Amami, Dielectric relaxation and magnetic properties of Ti and Zn co-doped GaFeO3. Physica B: Conden. Matter 538, 1–7 (2018). https://doi.org/10.1016/j.physb.2018.03.009

    Article  ADS  Google Scholar 

  26. I. Raies, S.A.A. Aldulmani, L.B. Farhat, M, Amami, Effect of restricted structural deformation on magnetic and electrical properties in GaFeO3 with Zn, Ti co-doping. J. Mater. Res. Technol. 9, 1673–1682 (2020). https://doi.org/10.1016/j.jmrt.2019.12.002

    Article  Google Scholar 

  27. A. Kumari, K. Kumari, F. Ahmed, A. Alshoaibi, P.A. Alvi, S. Dalela, M.M. Ahmad, R.N. Aljawfi, P. Dua, A. Vij, S. Kumar, Influence of Sm doping on structural, ferroelectric, electrical, optical and magnetic properties of BaTiO3. Vacuum 184, 109872 (2021). https://doi.org/10.1016/j.vacuum.2020.109872

    Article  ADS  Google Scholar 

  28. T. Wang, S.H. Song, Q. Ma, M.L. Tan, J.J. Chen, Highly improved multiferroic properties of Sm and Nb co-doped BiFeO3 ceramics prepared by spark plasma sintering combined with sol-gel powders. J. Alloys Compd. 795, 60–68 (2019). https://doi.org/10.1016/j.jallcom.2019.04.327

    Article  Google Scholar 

  29. T. Wang, X.-L. Wang, S.-H. Song, Q. Ma, Effect of rare-earth Nd/Sm doping on the structural and multiferroic properties of BiFeO3 ceramics prepared by spark plasma sintering. Ceram. Inter. 46, 15228–15235 (2020). https://doi.org/10.1016/j.ceramint.2020.03.061

    Article  Google Scholar 

  30. F. Zhang, X. Zeng, D. Bi, K. Guo, Y. Yao, S. Lu, Dielectric, Ferroelectric, and Magnetic Properties of Sm-Doped BiFeO3 Ceramics Prepared by a Modified Solid-State-Reaction Method. Materials 11, 2208 (2018). https://doi.org/10.3390/ma11112208

    Article  ADS  Google Scholar 

  31. R.S.N. Aina, S.A. Halim, M. Hashim, Effect of Sm-doping on Magnetic and Dielectric Properties of BiFeO3. Adv. Mater. Res. 501, 329–333 (2012). https://doi.org/10.4028/www.scientific.net/AMR.501.329

    Article  Google Scholar 

  32. K. Agrawal, B. Behera, S.C. Sahoo, S.K. Rout, A. Kumar, P.R. Das, Mn doped multiferroic in Ga0.97Nd0.03FeO3electroceramics. J Magn. Magn. Mat. 536, 168121 (2021). https://doi.org/10.1016/j.jmmm.2021.168121

    Article  Google Scholar 

  33. L.B. Mccusker, R.B.V. Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. App. Crystal. 32, 36–50 (1999). https://doi.org/10.1107/S0021889898009856

    Article  Google Scholar 

  34. S. Dugu, K.K. Mishra, D.K. Pradhan, S. Kumari, R.S. Katiyar, Coupled phonons and magnetic orderings in GaFeO3: Raman and magnetization studies. J. Appl. Phys. 125, 064101–064112 (2019). https://doi.org/10.1063/1.5072766

    Article  ADS  Google Scholar 

  35. V. Singh, A. Daryapurkar, S.S. Rajput, S. Mukherjee, A. Garg, R. Gupta, Effect of annealing atmosphere on leakage and dielectric characteristics of multiferroic gallium ferrite. J. Am. Ceram. Soc. 100, 5226–5313 (2017). https://doi.org/10.1111/jace.15053

    Article  Google Scholar 

  36. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Section A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  37. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  38. C.G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies. Phys. Rev. 83, 121 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  ADS  Google Scholar 

  39. T. Rahman Md, M. Vargas, C.V. Ramana, Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloys Compd. 617, 547–562 (2014). https://doi.org/10.1016/j.jallcom.2014.07.182

    Article  Google Scholar 

  40. J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, London, 1873)

    MATH  Google Scholar 

  41. K.W. Wagner, Zur Theorie der unvollkommenen Dielektrika. Ann. der Phys. 40, 817–885 (1993)

    MATH  Google Scholar 

  42. L. Chauhan, A.K. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceram. Int. 41, 8341–8351 (2015). https://doi.org/10.1016/j.ceramint.2015.03.014

    Article  Google Scholar 

  43. M.S. Alkathy, K.C. James Raju, J.A. Eiras, Colossal dielectric permittivity and high energy storage efficiency in barium strontium titanate ceramics co-doped with bismuth and lithium. J. Phys. D: Appl. Phys. 54, 125501 (2021). https://doi.org/10.1088/1361-6463/abd12b

    Article  ADS  Google Scholar 

  44. S. Suresh, Synthesis, structural and dielectric properties of zinc sulfide nanoparticles. Int. J. Phys. Sci. 8, 1121–1127 (2013). https://doi.org/10.5897/IJPS2013.3926

    Article  Google Scholar 

  45. S. Mahmoud, K.C.J. Alkathy, Raju, Structural, dielectric, electromechanical, piezoelectric, elastic and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics. J. Alloys Compd. 737, 464–476 (2018). https://doi.org/10.1016/j.jallcom.2017.12.121

    Article  Google Scholar 

  46. K. Sultan, M. Ikrama, K. Asokan, Structural, optical and dielectric study of Mn doped PrFeO3 ceramics. Vacuum 99, 251–258 (2014). https://doi.org/10.1016/j.vacuum.2013.06.014

    Article  ADS  Google Scholar 

  47. A. Ray, T. Basu, B. Behera, M. Kumar, R. Thapa, P. Nayak, Role of Gd-doping in conduction mechanism of BFO-PZO nanocrystalline composites: Experimental and first-principles studies. J. Alloy. Compd. 768, 198–213 (2018). https://doi.org/10.1016/j.jallcom.2018.07.116

    Article  Google Scholar 

  48. J.F. Scott, L. Kammerdiner, M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh, W.F. Oliver, Switching kinetics of lead zirconate titanate submicron thin film memories. J. Appl. Phys. 64, 787 (1988). https://doi.org/10.1063/1.341925

    Article  ADS  Google Scholar 

  49. A. Ghani, S. Yang, S.S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Y. Zhang, X. Song, X. Ren, Enhanced multiferroic properties of lead-free (1–x)GaFeO3-(x)Co0.5Zn0.5Fe2O4 composites. J. App. Phys. 124, 154101–154105 (2018). https://doi.org/10.1063/1.5044675

    Article  ADS  Google Scholar 

  50. S.S. Rajput, R. Katoch, K.K. Sahoo, G.N. Sharma, S.K. Singh, R. Gupta, A. Garg, Enhanced electrical insulation and ferroelectricity in La and Ni co-doped BiFeO3 thin films. J. Alloys Compd. 621, 339–344 (2015). https://doi.org/10.1016/j.jallcom.2014.09.161

    Article  Google Scholar 

  51. R.N. Panda, J.C. Shih, T.S. Chin, Magnetic properties of nano-crystalline Gd- or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique. J. Mag. Magn. Mater. 257, 79–86 (2003). https://doi.org/10.1016/S0304-8853(02)01036-3

    Article  ADS  Google Scholar 

  52. V.K. Lakhani, B. Zhao, L. Wang, U.N. Trivedi, K.B. Modi, Negative magnetization, magnetic anisotropy and magnetic ordering studies on Al3+- substituted copper ferrite. J. Alloys Compd. 509, 4861–4867 (2011). https://doi.org/10.1016/j.jallcom.2011.01.190

    Article  Google Scholar 

  53. V.A. Khomchenko, I.O. Troyanchuk, R. Szymczak, H. Szymczak, Negative magnetization in La0.75Nd0.25CrO3 perovskite. J. Mater. Sci. 43, 5662–5565 (2008). https://doi.org/10.1007/s10853-008-2799-3

    Article  ADS  Google Scholar 

  54. Y. Ma, M. Guilloux-Viry, P. Barahona, O. Peña, C. Moure, Observation of magnetization reversal in epitaxial Gd067Ca033MnO3 thin films. Appl. Phys. Lett. 86, 062506 (2005)

    Article  ADS  Google Scholar 

  55. M. Satalkar, S.N. Kane, M. Kumaresavanji, J.P. Araujo, On the role of cationic distribution in determining magnetic properties of Zn0.7−xNixMg0.2Cu0.1Fe2O4 nano ferrite. Mater. Res. Bull. 91, 14 (2017). https://doi.org/10.1016/j.materresbull.2017.03.021

    Article  Google Scholar 

  56. S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, Mg1-xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties. AIP Adv. 8, 047804 (2018). https://doi.org/10.1063/1.4994015

    Article  ADS  Google Scholar 

  57. S. Xavier, S. Thankachan, B.P. Jacob, E.M. Mohammed, Effect of Samarium Substitution on the Structural and Magnetic Properties of Nanocrystalline Cobalt Ferrite. J. Nanosci. 2013, 1–7 (2013). https://doi.org/10.1155/2013/524380

    Article  Google Scholar 

  58. M.B. Mohamed, H. Fuess, Effect of Mn doping on structural and magnetic properties of GaFeO3. J. Mag. Magnetic Mater. 323, 2090–2094 (2011). https://doi.org/10.1016/j.jmmm.2011.03.019

    Article  ADS  Google Scholar 

  59. T. Badapanda, S. Sarangi, B. Behera, S. Anwar, Structural and impedance spectroscopy study of Samarium modified Barium Zirconium Titanate ceramic prepared by mechanochemical Route. Curt. App. Phys. 14, 1192–1200 (2014). https://doi.org/10.1016/j.cap.2014.06.007

    Article  ADS  Google Scholar 

  60. B. Tiwari, R.N.P. Choudhary, Complex impedance spectroscopic analysis of Mn-modified Pb(Zr0.65Ti0.35)O3 electroceramics. J. Phys. Chem. Solids 69, 2852–2857 (2008). https://doi.org/10.1016/j.jpcs.2008.07.013

    Article  ADS  Google Scholar 

  61. S. Nasri, A. Oueslati, I. Chaabane, M. Gargouri, AC conductivity, Electric modulus analysis and Electrical conduction mechanism of RbFeP2O7 ceramic compound. Ceram. Int. 42, 14041–14048 (2016). https://doi.org/10.1016/j.ceramint.2016.06.011

    Article  Google Scholar 

  62. T. Sahu, B. Behera, Dielectric and electrical study along with the evidences of small polaron tunnelling in Gd doped bismuth ferrite lead titanate composites,. J. Mats. Sci. Mats Elects. 29, 7412–7424 (2018). https://doi.org/10.1007/s10854-018-8732-x

    Article  Google Scholar 

  63. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. App. Phys. 106, 024102–024110 (2009). https://doi.org/10.1063/1.3158121

    Article  ADS  Google Scholar 

  64. R. Kumari, N. Ahlawat, A. Agarwal, S. Sanghi, M. Sindhu, N. Ahlawat, Rietveld refinement, impedance spectroscopy and magnetic properties of Bi0.8Sr0.2FeO3 substituted Na0.5Bi0.5TiO3 ceramics. J. Magn. Magn. Mater. 414, 1–9 (2016). https://doi.org/10.1016/j.jmmm.2016.04.020

    Article  ADS  Google Scholar 

  65. T. Sahu, B. Behera, Dielectric, electrical and magnetic study of rare-earth-doped bismuth ferrite lead titanate. App. Phys. A 125, 1–13 (2019). https://doi.org/10.1007/s00339-019-2694-6

    Article  Google Scholar 

  66. B. Yeum, ZSimpWin Version 2.00, E Chem Software, 2001

Download references

Acknowledgements

Financial support from the TEQIP-III, Veer Surendra Sai University of Technology, Burla, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Banarji Behera or Piyush R. Das.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, K., Behera, B., Sahoo, S.C. et al. Dielectric, ferroelectric, magnetic and electrical properties of Sm-doped GaFeO3. Appl. Phys. A 128, 156 (2022). https://doi.org/10.1007/s00339-022-05279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05279-5

Keywords

Navigation