Skip to main content
Log in

Highly efficient nanocomposite-containing coatings for the protection of Mg alloy against corrosion in chloride containing electrolytes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using two different types of protective coatings, we examined the protection of magnesium alloy (AZ61) with composition of Mg(93)–Al(6) –Zn(1) against corrosion in neutral 3.5% NaCl solution. We treated the alloy with a novel silane polymer coating that demonstrated viable in protecting the surface against corrosion. The hybrid protecting film is composed of 1,2 bis(triethoxysilyl)ethane-poly(vinyl alcohol). Also we examined an alternative approach to coat the magnesium-based alloy with a layer containing nickel and TiO2 nanoparticles and followed by applying a protective silane film. The silane film was synthesized from a silane precursor (1,2-bis(triethoxysilyl)ethane) using a sol–gel cross-linking method. The surface of the bare and coated Mg alloy was evaluated before and after exposure to the corrosive medium using structural, surface and electrochemical techniques. Structural techniques include X-ray photoelectron spectroscopy. Scanning electron microscopy/energy-dispersive X-ray spectroscopy analysis was used to explore the surface morphologies and structures. The electrochemical techniques used were potentiodynamic polarization and electrochemical impedance spectroscopy. The Mg alloy coated with the hybrid films has been tested for prolonged exposure to the chloride solution, and both coatings have proved effective in protecting the Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.L. Mordike, T. Ebert, Magnesium: properties—applications—potential. Mater. Sci. Eng. A 302, 37–45 (2001). Doi: https://doi.org/10.1016/S0921-5093(00)01351-4.

  2. E. Ghali, W. Dietzel, K.-U. Kainer, General and localized corrosion of magnesium alloys: a critical review. J. Mater. Eng. Perform. 13, 7–23 (2004). https://doi.org/10.1361/10599490417533

    Article  Google Scholar 

  3. M.K. Kulekci, Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851–865 (2008). https://doi.org/10.1007/s00170-007-1279-2

    Article  Google Scholar 

  4. C.D. Gu, W. Yan, J.L. Zhang, J.P. Tu, Corrosion resistance of AZ31B magnesium alloy with a conversion coating produced from a choline chloride—Urea based deep eutectic solvent. Corros. Sci. 106, 108–116 (2016). https://doi.org/10.1016/j.corsci.2016.01.030

    Article  Google Scholar 

  5. X. Jiang, R. Guo, S. Jiang, Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy. J. Magnesium Alloys 4, 230–241 (2016). https://doi.org/10.1016/j.jma.2016.06.003

    Article  ADS  Google Scholar 

  6. M.A. Deyab, R. Ouarsal, A.M. Al-Sabagh, M. Lachkar, B. El Bali, Enhancement of corrosion protection performance of epoxy coating by introducing new hydrogenphosphate compound. Prog. Org. Coat. 107, 37–42 (2017). Doi: https://doi.org/10.1016/j.porgcoat.2017.03.014

  7. S. Khalifeh, T.D. Burleigh, Super-hydrophobic stearic acid layer formed on anodized high purified magnesium for improving corrosion resistance of bioabsorbable implants. J. Magnesium Alloys 6, 327–336 (2018). https://doi.org/10.1016/j.jma.2018.08.003

    Article  Google Scholar 

  8. Z. Shi, G. Song, A. Atrens, Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy. Corros. Sci. 48, 1939–1959 (2006). https://doi.org/10.1016/j.corsci.2005.08.004

    Article  Google Scholar 

  9. Y.-R. Zhou, S. Zhang, L.-L. Nie, Z.-J. Zhu, J.-Q. Zhang, F.-H. Cao, J.-X. Zhang, Electrodeposition and corrosion resistance of Ni–P–TiN composite coating on AZ91D magnesium alloy. Trans. Nonferrous Met. Soc. China 26, 2976–2987 (2016). https://doi.org/10.1016/S1003-6326(16)64428-X

    Article  Google Scholar 

  10. Z. Shao, Z. Cai, R. Hu, S. Wei, The study of electroless nickel plating directly on magnesium alloy. Surf. Coat. Technol. 249, 42–47 (2014). https://doi.org/10.1016/j.surfcoat.2014.03.043

    Article  Google Scholar 

  11. M. Yekehtaz, F. Sittner, R. Ugas-Carrión, S. Flege, J. Brötz, W. Ensinger, Characterization of protective sol–gel coatings on magnesium based on phenyl-triethoxysilane precursor. Thin Solid Films 518, 5223–5226 (2010). https://doi.org/10.1016/j.tsf.2010.04.040

    Article  ADS  Google Scholar 

  12. N. Karthik, Y.R. Lee, M.G. Sethuraman, Hybrid sol-gel/thiourea binary coating for the mitigation of copper corrosion in neutral medium. Prog. Org. Coat. 102, 259–267 (2017). https://doi.org/10.1016/j.porgcoat.2016.10.024

    Article  Google Scholar 

  13. H. Uchiyama, T. Bando, H. Kozuka, Effect of the amount of H2O and HNO3 in Ti(OC3H7i)4 solutions on the crystallization of sol-gel-derived TiO2 films. Thin Solid Films 669, 157–161 (2019). https://doi.org/10.1016/j.tsf.2018.10.050

    Article  ADS  Google Scholar 

  14. A.J. López, A. Ureña, J. Rams, Wear resistant coatings: Silica sol–gel reinforced with carbon nanotubes. Thin Solid Films 519, 7904–7910 (2011). https://doi.org/10.1016/j.tsf.2011.05.076

    Article  ADS  Google Scholar 

  15. A.A. El-Hadad, V. Barranco, A. Samaniego, I. Llorente, F.R. García-Galván, A. Jiménez-Morales, J.C. Galván, S. Feliu, Influence of substrate composition on corrosion protection of sol–gel thin films on magnesium alloys in 0.6M NaCl aqueous solution. Prog. Org. Coat. 77, 1642–1652 (2014). Doi: https://doi.org/10.1016/j.porgcoat.2014.05.026.

  16. X. Guo, K. Du, Q. Guo, Y. Wang, F. Wang, Experimental study of corrosion protection of a three-layer film on AZ31B Mg alloy. Corros. Sci. 65, 367–375 (2012). https://doi.org/10.1016/j.corsci.2012.08.055

    Article  Google Scholar 

  17. L. Zeng, S. Yang, W. Zhang, Y. Guo, C. Yan, Preparation and characterization of a double-layer coating on magnesium alloy AZ91D. Electrochim. Acta 55, 3376–3383 (2010). https://doi.org/10.1016/j.electacta.2010.01.041

    Article  Google Scholar 

  18. X. Fan, Y. Wang, B. Zou, L. Gu, W. Huang, X. Cao, Preparation and corrosion resistance of MAO/Ni–P composite coat on Mg alloy. Appl. Surf. Sci. 277, 272–280 (2013). https://doi.org/10.1016/j.apsusc.2013.04.044

    Article  ADS  Google Scholar 

  19. G. Bierwagen, The physical chemistry of organic coatings revisited—viewing coatings as a materials scientist. J. Coat. Technol. Res. 5, 133–155 (2008). https://doi.org/10.1007/s11998-007-9066-4

    Article  Google Scholar 

  20. G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim. Acta 45, 2515–2533 (2000). https://doi.org/10.1016/S0013-4686(00)00348-0

    Article  Google Scholar 

  21. N. Scharnagl, C. Blawert, W. Dietzel, Corrosion protection of magnesium alloy AZ31 by coating with poly(ether imides) (PEI). Surf. Coat. Technol. 203, 1423–1428 (2009). https://doi.org/10.1016/j.surfcoat.2008.11.018

    Article  Google Scholar 

  22. F.L. Miguel, R. Müller, S. Mathur, F. Mücklich, Microstructure and mechanical properties of electrodeposited Ni and Ni–matrix-nanocomposite thin films. Mater. Sci. Eng. A 646, 254–262 (2015). Doi: https://doi.org/10.1016/j.msea.2015.08.069.

  23. L. Benea, E. Danaila, J.-P. Celis, Influence of electro-co-deposition parameters on nano-TiO2 inclusion into nickel matrix and properties characterization of nanocomposite coatings obtained. Mater. Sci. Eng. A 610, 106–115 (2014). Doi: https://doi.org/10.1016/j.msea.2014.05.028.

  24. H. Goldasteh, S. Rastegari, The influence of pulse plating parameters on structure and properties of Ni–W–TiO2 nanocomposite coatings. Surf. Coat. Technol. 259, 393–400 (2014). https://doi.org/10.1016/j.surfcoat.2014.10.064

    Article  Google Scholar 

  25. E. Beltowska-Lehman, P. Indyka, A. Bigos, M.J. Szczerba, M. Kot, Effect of hydrodynamic conditions of electrodeposition process on microstructure and functional properties of Ni-W/ZrO2 nanocomposites. J. Electroanal. Chem. 775, 27–36 (2016). https://doi.org/10.1016/j.jelechem.2016.05.003

    Article  Google Scholar 

  26. H. Gül, F. Kılıç, M. Uysal, S. Aslan, A. Alp, H. Akbulut, Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition. Appl. Surf. Sci. 258, 4260–4267 (2012). https://doi.org/10.1016/j.apsusc.2011.12.069

    Article  ADS  Google Scholar 

  27. V.S. Saji, Review of rare-earth-based conversion coatings for magnesium and its alloys. J. Mater. Res. Technol. 8, 5012–5035 (2019). https://doi.org/10.1016/j.jmrt.2019.08.013

    Article  Google Scholar 

  28. S. Zhang, Q. Li, J. Fan, W. Kang, W. Hu, X. Yang, Novel composite films prepared by sol–gel technology for the corrosion protection of AZ91D magnesium alloy. Prog. Org. Coat. 66, 328–335 (2009). https://doi.org/10.1016/j.porgcoat.2009.08.011

    Article  Google Scholar 

  29. A.J. López, J. Rams, A. Ureña, Sol–gel coatings of low sintering temperature for corrosion protection of ZE41 magnesium alloy. Surf. Coat. Technol. 205, 4183–4191 (2011). https://doi.org/10.1016/j.surfcoat.2011.03.011

    Article  Google Scholar 

  30. N. Hellgren, R.T. Haasch, S. Schmidt, L. Hultman, I. Petrov, Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: New insights from in situ XPS. Carbon 108, 242–252 (2016). https://doi.org/10.1016/j.carbon.2016.07.017

    Article  Google Scholar 

  31. G.F. Cerofolini, C. Galati, L. Renna, Si 2p XPS spectrum of the hydrogen-terminated (100) surface of device-quality silicon. Surf. Interface Anal. 35, 968–973 (2003). https://doi.org/10.1002/sia.1632

    Article  Google Scholar 

  32. A.F. Orliukas, T. Šalkus, A. Kežionis, V. Venckutė, V. Kazlauskienė, J. Miškinis, G. Laukaitis, J. Dudonis, XPS and impedance spectroscopy of some oxygen vacancy conducting solid electrolyte ceramics. Solid State Ionics 188, 36–40 (2011). https://doi.org/10.1016/j.ssi.2010.11.001

    Article  Google Scholar 

  33. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006). https://doi.org/10.1016/j.susc.2006.01.041

    Article  ADS  Google Scholar 

  34. R. Shvab, E. Hryha, L. Nyborg, Surface chemistry of the titanium powder studied by XPS using internal standard reference. Powder Metall. 60, 42–48 (2017). https://doi.org/10.1080/00325899.2016.1271092

    Article  Google Scholar 

Download references

Acknowledgements

Instrumentation facilities through grants GS01/01, GS02/08, Science Analytical Facilities (Department of Chemistry), RSPU instrumentation facilities, are all highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. BinSabt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 951 kb)

Appendix A: supplementary material:

Appendix A: supplementary material:

The following are the Supplementary data to this article: Supplementary data 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BinSabt, M.H., Abditon, M. & Galal, A. Highly efficient nanocomposite-containing coatings for the protection of Mg alloy against corrosion in chloride containing electrolytes. Appl. Phys. A 128, 151 (2022). https://doi.org/10.1007/s00339-021-05248-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05248-4

Keywords

Navigation