Skip to main content
Log in

Oxygen defects induced tailored optical and magnetic properties of FexCr2−xO3 (0 ≤ x ≤ 0.1) nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural, electronic, optical, and magnetic properties of pristine chromium oxide (Cr2O3) and iron (Fe)-substituted Cr2O3 nanoparticles prepared using wet chemical method were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), and physical properties measurement system-vibration sample magnetometer (PPMS–VSM). XRD pattern confirmed the formation of the single rhombohedral phase of pristine Cr2O3, and Fe-substituted Cr2O3 nanoparticles having space group R3c. Micro-Raman study demonstrated the creation of magnon with Fe substitution. XPS studies revealed the successful incorporation of Fe cations into the Cr2O3 lattice. It also affirms that with Fe doping, there is the occurrence of mixed oxidation states of Cr, Fe, and oxygen defects, which may be responsible for the origin of magnetism in the as-prepared nanoparticles. UV–Vis studies were also performed to determine optical behavior, which revealed narrowing of bandgap from 2.92 eV to 2.06 eV with Fe doping due to the formation of impurity levels between the forbidden gap. Temperature dependence of magnetization (M–T) studies demonstrated the coexistence of antiferromagnetic (AFM) and ferromagnetic (FM) below cusp transition and dominance of AFM and paramagnetic (PM) state at room temperature, which was fitted together with Curie–Weiss law and 3D-spin wave model below cusp temperature and above cusp temperature to Johnston equation. M–H curves recorded at 300 K confirm that the as-prepared nanoparticles exhibit either PM or AFM magnetic behavior. The observed PM and AFM-dominated magnetization behavior at 300 K is explained by considering the role of mixed oxidation states and oxygen defects which leads to activate bound magnetic polarons (BMP) with nearer Fe or Cr 3d ions. However, at 5 K, all samples show enhanced magnetization with AFM correlation due to frozen antiferromagnetic superexchange interactions due to thermal effect. The narrowing of bandgap and the magnetization behavior with Fe substitution in Cr2O3 lattices reveals the role of oxygen vacancies and their potential for advanced functional applications in semiconductors such as magneto-optics and spintronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Dietl, Nat. Mater. 9, 965 (2010)

    Article  ADS  Google Scholar 

  2. V. Christensen, and N. Pryds, Appl. Phys, D, 120505 (2020)

  3. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  4. N. Ali, B. Singh, Z.A. Khan, A.R. Vijaya, K. Tarafder, S. Ghosh, Sci. Rep. 9, 3 (2019)

    Article  Google Scholar 

  5. J. Philip, A. Punnoose, B.I. Kim, K.M. Reddy, S. Layne, J.O. Holmes, B. Satpati, P.R. Leclair, T.S. Santos, J.S. Moodera, Nat. Mater. 5, 298 (2006)

    Article  ADS  Google Scholar 

  6. N.S. Garnet, V. Ghodsi, L.N. Hutfluss, P. Yin, M. Hegde, P.V. Radovanovic, J. Phys. Chem. C 121, 1918 (2017)

    Article  Google Scholar 

  7. K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, J. Alloys Compd. 588, 681 (2014)

    Article  Google Scholar 

  8. K.S. Ranjith, P. Saravanan, S.H. Chen, C.L. Dong, C.L. Chen, S.Y. Chen, K. Asokan, R.T.R. Kumar, J. Phys. Chem. C 118, 27039 (2014)

    Article  Google Scholar 

  9. J. Singh, V. Verma, R. Kumar, S. Sharma, R. Kumar, Vacuum 159, 282–286 (2019)

    Article  ADS  Google Scholar 

  10. E. Winkler, R.D. Zysler, H.E. Troiani, D. Fiorani, Phys. B Condens. Matter 384, 268 (2006)

    Article  ADS  Google Scholar 

  11. F.C.O.I. Banerjee, H.K.D. Kim, D. Pisani, K.P. Mohanchandra, and G.P. Carman, J. Alloys Compd. 614, 305 (2014)

  12. J.J. Carey, M. Legesse, M. Nolan, J. Phys. Chem. C 120, 19160 (2016)

    Article  Google Scholar 

  13. H. Sadat Nabi and R. Pentcheva, Phys. Rev. B Condens. Matter Mater. Phys. 83, 2 (2011)

  14. P. Bhardwaj, J. Singh, R. Kumar, R. Kumar, and V. Verma, Solid State Sci. 115, 106581 (2021)

  15. M. Coskun, G. Hassnain Jaffari, S. Manzoor, M. Korkmaz, and S. Ismat Shah, J. Magn. Magn. Mater. 322, 1731 (2010)

  16. M.D. Hossain, S. Dey, R.A. Mayanovic, M. Benamara, MRS Adv. 1, 2387 (2016)

    Article  Google Scholar 

  17. S.H. Yang, S.J. Liu, Z.H. Hua, S.G. Yang, J. Alloys Compd. 509, 6946 (2011)

    Article  Google Scholar 

  18. Z. Yang, J. Zhang, D. Gao, Z. Zhu, G. Yang, and D. Xue, RSC Adv. 16, 1 (2010)

  19. R.N. Bhowmik, K.V. Siva, R. Ranganathan, C. Mazumdar, J. Magn. Magn. Mater. 432, 56 (2017)

    Article  ADS  Google Scholar 

  20. J. Rodríguez-Carvajal, Manual 1, 1 (2001)

    Google Scholar 

  21. K.N. Patel, M.P. Deshpande, V.P. Gujarati, S. Pandya, V. Sathe, S.H. Chaki, Mater. Res. Bull. 106, 187 (2018)

    Article  Google Scholar 

  22. B.Y.R.D. Shannon, M.H.N.H. Baur, O.H. Gibbs, M. Eu, V. Cu, Acta. Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  23. S. Khamlich, E. Manikandan, B.D. Ngom, J. Sithole, O. Nemraoui, I. Zorkani, R. McCrindle, N. Cingo, M. Maaza, J. Phys. Chem. Solids 72, 714 (2011)

    Article  ADS  Google Scholar 

  24. M.I. Baraton, G. Busca, M.C. Prieto, G. Ricchiardi, V. Sanchez Escribano, J. Solid State Chemistry 112, 9–14 (1994)

    Google Scholar 

  25. S. Rajagopal, M. Bharaneswari, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, Mater. Res. Express 3, 1 (2016)

    Article  Google Scholar 

  26. T.C. Kaspar, P.V. Sushko, M.E. Bowden, S.M. Heald, A. Papadogianni, C. Tschammer, O. Bierwagen, and S.A. Chambers, Phys. Rev. B 94 (2016)

  27. J. Singh, R. Kumar, V. Verma, and R. Kumar, J. Alloys Compd. 847 (2020)

  28. H. Liu, J. Yang, Y. Zhang, and L. Yang, 145803 (n.d.)

  29. T. Yamashita and P. Hayes, 254, 2441 (2008)

  30. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  31. B. Pal, P.K. Giri, J. Nanosci. Nanotechnol. 11, 9167 (2011)

    Article  Google Scholar 

  32. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)

    Article  ADS  Google Scholar 

  33. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, and M. Thaiyan, J. Phys. Chem. C 118, 9717 (2014)s

  34. K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nat. Mater. 5, 291 (2006)

    Article  ADS  Google Scholar 

  35. M.A. Hassan, F. Ahmad, and Z.M. Abd El-Fattah, J. Alloys Compd. 750, 320 (2018)

  36. A. Almontasser, A. Parveen, M. Hashim, A. Ul, H. Ameer, Appl. Nanosci. 11, 583 (2021)

    Article  ADS  Google Scholar 

  37. J. Singh, R. Kumar, V. Verma, and R.Kumar, Ceram. Int. (2020)

  38. K. Punia, G. Lal, S. Dalela, S.N. Dolia, P.A. Alvi, S.K. Barbar, K.B. Modi, and S. Kumar, J. Alloys Compd. 868, 159142 (2021)

  39. U. Ilyas, R.S. Rawat, T.L. Tan, P. Lee, R. Chen, H.D. Sun, L. Fengji, and S. Zhang, J. Appl. Phys. 111 (2012)

  40. C. Bárcena, A.K. Sra, J. Gao, Nanoscale Magn. Mater. Appl. 167, 591 (2009)

    Google Scholar 

  41. S. Layek, H.C. Verma, J. Magn. Magn. Mater. 397, 73 (2016)

    Article  ADS  Google Scholar 

  42. Y.W. Jun, J.W. Seo, J. Cheon, Acc. Chem. Res. 41, 179 (2008)

    Article  Google Scholar 

  43. A.P. Safronov, I.V. Beketov, S.V. Komogortsev, G.V. Kurlyandskaya, A.I. Medvedev, D.V. Leiman, A. Larrañaga, and S.M. Bhagat, AIP Adv. 3, 0 (2013)

  44. N. Ali, A.R. Vijaya, Z.A. Khan, K. Tarafder, and A. Kumar, Sci. Rep. 1 (2019).

  45. V. Gandhi, R. Ganesan, H. Hameed, A. Syedahamed, and M. Thaiyan, (2014).

  46. K.R. Kittilstved, W.K. Liu, D. R. Gamelin 5, 291 (2006)

    Google Scholar 

  47. V. Verma and M. Katiyar, J. Phys. D. Appl. Phys. 48 (2015)

  48. S. Bedanta and W. Kleemann, J. Phys. D. Appl. Phys. 42 (2009)

  49. B. Kisan, J. Kumar, and P. Alagarsamy, J. Alloys Compd. 868, 159176 (2021)

  50. B. G. Ganga, M. R. Varma, and P. N. Santhosh, 7086 (2015)

  51. S. Kunj, J. Ind. Eng. Chem. (2020)

  52. B. J. Sarkar, J. Mater. Sci. Mater. Electron. (2020)

  53. D.C. Johnston, J. Magn. Magn. Mater. 100, 218 (1991)

    Article  ADS  Google Scholar 

  54. B.J. Sarkar, M. Dalal, A. Mitra, J. Mandal, A. Bandyopadhyay, P.K. Chakrabarti, J. Alloys Compd. 752, 448 (2018)

    Article  Google Scholar 

  55. O.P. Sushkov, Nat. Phys. 10, 339 (2014)

    Article  Google Scholar 

  56. K. Punia, G. Lal, S. K. Barbar, S. Narain, P. Ahmad, S. Dalela, and S. Kumar, Vacuum 184, 109921 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, P., Singh, J., Kumar, R. et al. Oxygen defects induced tailored optical and magnetic properties of FexCr2−xO3 (0 ≤ x ≤ 0.1) nanoparticles. Appl. Phys. A 128, 135 (2022). https://doi.org/10.1007/s00339-021-05233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05233-x

Keywords

Navigation